说明:
测试文件:
echo -e "aa\tbb \tcc\nbb\tcc\tdd" > 3.txt
hadoop fs -put 3.txt /tmp/3.txt
全文的例子均以该文件做测试用例,统计单词出现的次数(WordCount)。
1、原生态的方式:java 源码编译打包成jar包后,由 hadoop 脚本调度执行,举例:
import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { /** * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类, * 这些类实现了WritableComparable接口, 都能够被串行化从而便于在分布式环境中进行数据交换, * 你可以将它们分别视为long,int,String 的替代品。 */ // IntWritable one 相当于 java 原生类型 int 1 private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { // 每行记录都会调用 map 方法处理,此处是每行都被分词 StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); // 输出每个词及其出现的次数 1,类似 <word1,1><word2,1><word1,1> context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { // key 相同的键值对会被分发到同一个 reduce中处理 // 例如 <word1,<1,1>>在 reduce1 中处理,而<word2,<1>> 会在 reduce2 中处理 int sum = 0; // 相同的key(单词)的出现次数会被 sum 累加 for (IntWritable val : values) { sum += val.get(); } result.set(sum); // 1个 reduce 处理完1 个键值对后,会输出其 key(单词)对应的结果(出现次数) context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); // 多队列hadoop集群中,设置使用的队列 conf.set("mapred.job.queue.name", "regular"); // 之所以此处不直接用 argv[1] 这样的,是为了排除掉运行时的集群属性参数,例如队列参数, // 得到用户输入的纯参数,如路径信息等 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); for (String argsStr : otherArgs) { System.out.println("-->> " + argsStr); } if (otherArgs.length < 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); // map、reduce 输入输出类 job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // 输入输出路径 FileInputFormat.addInputPath(job, new Path(otherArgs[1])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[2])); // 多子job的类中,可以保证各个子job串行执行 System.exit(job.waitForCompletion(true) ? 0 : 1); } }
执行:
bin/hadoop jar /tmp/wordcount.jar WordCount /tmp/3.txt /tmp/5
结果:
hadoop fs -cat /tmp/5/* aa 1 bb 2 cc 2 dd 1
参考资料:
Hadoop - Map/Reduce 通过WordCount例子的变化来了解新版hadoop接口的变化
http://blog.csdn.net/derekjiang/article/details/6836209
Hadoop示例程序WordCount运行及详解
http://samuschen.iteye.com/blog/763940
官方的 wordcount v1.0 例子
http://hadoop.apache.org/docs/r1.1.1/mapred_tutorial.html#Example%3A+WordCount+v1.0
A1 = load '/data/3.txt'; A = stream A1 through `sed "s/\t/ /g"`; B = foreach A generate flatten(TOKENIZE((chararray)$0)) as word; C = filter B by word matches '\\w+'; D = group C by word; E = foreach D generate COUNT(C), group; dump E;
注意:不同分隔符对load及后面的$0的影响。
create table textlines(text string); load data inpath '/data/3.txt' overwrite into table textlines; SELECT wordColumn, count(1) FROM textlines LATERAL VIEW explode(split(text,'\t+')) wordTable AS wordColumn GROUP BY wordColumn;
详情请见:
#!/usr/bin/python import os,re,sys for line in sys.stdin: for i in line.strip().split("\t"): print i
reduce:
#!/usr/bin/python import os,re,sys arr = {} for words in sys.stdin: word = words.strip() if word not in arr: arr[word] = 1 else: arr[word] += 1 for k, v in arr.items(): print str(k) + ": " + str(v)
最后在shell下执行:
hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-0.20.203.0.jar -file map.py -file reduce.py -mapper map.py -reducer reduce.py -input /data/3.txt -output /data/py
注意:脚本开头需要显示指定何种解释器以及赋予脚本执行权限
#!/bin/bash tr '\t' '\n'
reduce:
#!/bin/bash sort|uniq -c
最后在shell下执行:
june@deepin:~/hadoop/hadoop-0.20.203.0/tmp> hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-streaming-0.20.203.0.jar -file map.py -file reduce.py -mapper map.py -reducer reduce.py -input /data/3.txt -output /data/py packageJobJar: [map.py, reduce.py, /home/june/data_hadoop/tmp/hadoop-unjar2676221286002400849/] [] /tmp/streamjob8722854685251202950.jar tmpDir=null 12/10/14 21:57:00 INFO mapred.FileInputFormat: Total input paths to process : 1 12/10/14 21:57:00 INFO streaming.StreamJob: getLocalDirs(): [/home/june/data_hadoop/tmp/mapred/local] 12/10/14 21:57:00 INFO streaming.StreamJob: Running job: job_201210141552_0041 12/10/14 21:57:00 INFO streaming.StreamJob: To kill this job, run: 12/10/14 21:57:00 INFO streaming.StreamJob: /home/june/hadoop/hadoop-0.20.203.0/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201210141552_0041 12/10/14 21:57:00 INFO streaming.StreamJob: Tracking URL: http://localhost:50030/jobdetails.jsp?jobid=job_201210141552_0041 12/10/14 21:57:01 INFO streaming.StreamJob: map 0% reduce 0% 12/10/14 21:57:13 INFO streaming.StreamJob: map 67% reduce 0% 12/10/14 21:57:19 INFO streaming.StreamJob: map 100% reduce 0% 12/10/14 21:57:22 INFO streaming.StreamJob: map 100% reduce 22% 12/10/14 21:57:31 INFO streaming.StreamJob: map 100% reduce 100% 12/10/14 21:57:37 INFO streaming.StreamJob: Job complete: job_201210141552_0041 12/10/14 21:57:37 INFO streaming.StreamJob: Output: /data/py june@deepin:~/hadoop/hadoop-0.20.203.0/tmp> hadoop fs -cat /data/py/part-00000 1 aa 1 bb 1 bb 2 cc 1 dd june@deepin:~/hadoop/hadoop-0.20.203.0/tmp>
特别提示:上述有些方法对字段后的空格忽略或计算,请注意仔细甄别。