- 数据霸权与公共利益的博弈:强制许可制度能否打破数字帝国的城墙
首席数据官高鹏律师数字经济团队创作,AI辅助当数据成为新贵:一场静默的“圈地运动”2025年的某个清晨,某头部电商平台的数据库负责人在晨会上宣布:“我们的用户行为数据集已覆盖8亿活跃用户,这是我们的护城河。”这句话背后,藏着一个被忽视的真相:数据的排他性权利正在催生新的垄断形态——那些掌握海量数据的企业,正悄然构建起数字时代的“封建领地”。数据知识产权的排他性,本意是保护企业对数据的投入与创新,但
- Redis在企业实战开发中的核心作用:从缓存到分布式系统的关键支柱
LambdaCat
缓存redisjava
在高并发、分布式系统成为主流的今天,Redis已成为企业技术栈中不可或缺的组件。据2024年最新统计,超过82%的互联网企业在生产环境中使用Redis,处理着每秒数十万甚至上百万级的请求在现代软件开发领域,高性能、高并发和可扩展性已成为系统设计的核心要求。面对海量用户和实时数据处理需求,传统数据库在性能方面逐渐显现瓶颈。正是在这样的背景下,Redis(RemoteDictionaryServer)
- Open3D 进阶(31)渐进三角网(PTD)地面滤波
点云侠
点云进阶线性代数算法计算机视觉python
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、参数指南四、结果展示。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 PTD的核心思想是迭代加密三角网,逐步逼近真实地形:实现流程主要包括以
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- 《Redis高并发优化策略与规范清单:从开发到运维的全流程指南》
猕员桃
redis运维数据库
Redis高并发优化策略与规范清单:从开发到运维的全流程指南在互联网应用的后端架构中,Redis凭借其高性能、高并发的特性,成为缓存和数据存储的首选方案。无论是电商抢购、社交平台的点赞计数,还是在线旅游平台的实时数据查询,Redis都在支撑着海量请求的快速处理。然而,随着业务规模的扩大和流量的激增,Redis在高并发场景下也面临诸多挑战,如性能瓶颈、内存溢出、缓存雪崩等。为了确保Redis在高并发
- Spring Batch :高效处理海量数据的利器
一叶飘零_sweeeet
Springbootspringboot
SpringBatch是Spring框架中一个功能强大的批处理框架,旨在帮助开发人员轻松处理大量数据的批量操作,比如数据的导入、导出、转换以及定期的数据清理等任务。它提供了一套完善且灵活的机制,使得原本复杂繁琐的数据批处理工作变得条理清晰、易于管理和扩展。接下来,我们将全方位深入探究SpringBatch,从其核心概念、架构组成,到具体的使用示例以及在不同场景下的应用优势等,带你充分领略它的魅力所
- 什么是 QueryGPT?智能查询工具如何重塑信息检索的未来?
镜舟科技
StarRocksQueryGPT数据查询数据分析多模态交互
从客户行为数据到供应链信息,从市场趋势到内部运营指标,这些数据蕴含着巨大的商业价值。然而,数据量的激增也带来了前所未有的检索挑战:如何在海量信息中快速定位所需数据?如何确保查询结果的准确性和时效性?据统计,75%的企业正受困于低效的查询工具,这已成为阻碍企业数字化转型的关键痛点。传统的数据查询方式主要依赖SQL语句或特定的查询语言,这要求用户具备专业的编程知识和对数据结构的深入理解。即使对于数据分
- 构建医学文献智能助手:基于 LangChain 的专业领域 RAG 系统实践
前言在当今医疗科技快速发展的时代,每天都有数以千计的医学研究成果在全球范围内发表。从临床试验报告到基础研究论文,从流行病学调查到药物研发数据,这些专业文献承载着推动医学进步的重要知识。然而,面对如此海量且专业性极强的文献资料,医疗从业者往往感到力不从心。如何在有限的时间内,准确把握文献核心价值,并将其转化为临床实践的指导?这个问题一直困扰着整个医疗行业。1.项目背景与业务价值1.1医学文献阅读的困
- RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用
ApacheDubbo
spring人工智能架构SpringAIRAG
>夏冬,SpringAIAlibabaContributorRAG简介什么是RAG(检索增强生成)RAG(RetrievalAugmentedGeneration,检索增强生成)是一种结合信息检索和文本生成的技术范式。核心设计理念RAG技术就像给AI装上了「实时百科大脑」,通过先查资料后回答的机制,让AI摆脱传统模型的"知识遗忘"困境。️四大核心步骤1.文档切割→建立智能档案库核心任务:将海量文档
- Python 数据挖掘实战: 关联规则与聚类分析,解锁数据价值的钥匙
清水白石008
pythonPython题库python数据挖掘动画
Python数据挖掘实战:关联规则与聚类分析,解锁数据价值的钥匙引言在数字化浪潮席卷全球的今天,数据已成为企业和组织最重要的战略资产。海量数据蕴藏着巨大的价值,等待我们去挖掘和发现。数据挖掘(DataMining),作为从海量数据中提取有价值知识和模式的关键技术,正日益受到各行各业的重视。它如同探矿者的火眼金睛,能够穿透数据的迷雾,发现隐藏在背后的规律和趋势,为商业决策、科学研究和社会发展提供强有
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- 《多设备协同训练:HarmonyOS联邦学习驱动Unity游戏AI进化》
爱学习的小齐哥哥
HarmonyOS5Unity游戏HarmonyOS5unity游戏引擎Unity游戏
随着游戏产业的智能化升级,游戏AI正从传统的规则驱动向数据驱动的“自进化”模式转型。然而,传统游戏AI训练面临数据孤岛、计算资源受限、隐私安全风险三大核心挑战:单设备训练难以处理复杂场景的海量数据,集中式训练需上传用户行为数据(侵犯隐私),且高性能计算依赖云端或专用硬件(成本高、延迟大)。在此背景下,HarmonyOS联邦学习与多设备协同训练的融合,为Unity游戏AI的智能化进化提供了突破性解决
- [特殊字符]推客带货小程序解决方案——0门槛裂变营销,佣金赚不停!
吞掉星星的鲸鱼
小程序推客
核心卖点✅源码交付,自主掌控:提供完整微信小程序源码,支持二次开发,无后顾之忧。✅API无缝对接:快速集成电商平台,一键导入海量商品库。✅分佣系统智能化:自定义佣金比例、多级分销、实时结算,激励推客疯狂带货。✅社群裂变工具:内置海报生成、分享追踪、数据看板,精准量化推广效果。✅全行业适用:服装、美妆、母婴、本地生活……适配各领域带货场景。目标客户群体带货机构/商家:想低成本搭建自有分销体系的中小企
- Python爬虫实战:研究jieba相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmljieba分词
1.引言1.1研究背景与意义随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。1.2研究目标与方法本研究旨在构建一个完整的新闻文本分析
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- Cursor 如何保障「代码索引」的安全、高效
编者按:AI编程工具如何迅速检索海量代码库,并精准定位到最相关的代码片段?这个看似不可能完成的任务,却是决定现代AI编程工具用户体验的关键技术挑战。我们今天为大家带来的这篇文章,作者的观点是:Cursor通过巧妙运用默克尔树数据结构,实现了对大型代码库的快速索引和高效增量更新,这正是其能够提供精准AI辅助编程服务的技术基础。作者|Engineer'sCodex编译|岳扬Cursor——这家最近宣布
- NoSQL 之 Redis 配置与优化
天空之城夢主
nosqlredis数据库
这里写目录标题Redis介绍关系数据库与非关系型数据库关系型数据库非关系型数据库非关系型数据库产关系型数据库已经诞生很久了,而且一直在使用。面对这样的情况,为什么还会产生NoSQL?那么,下面就来介绍一下NoSQL产生的背景。Highperformance--对数据库高并发读写需求HugeStorage--对海量数据高效存储与访问需求HighScalability&&HighAvailabilit
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- 大屏可视化制作指南
万能小贤哥
信息可视化3d人工智能
一、大屏可视化概述(一)概念大屏可视化是指通过大屏幕展示复杂数据的视觉呈现形式,它借助图形、图表、地图等元素,将海量数据以直观易懂的方式呈现出来,帮助用户快速理解数据背后的含义和价值。(二)应用场景监控中心:如交通监控中心、城市管理监控中心等,实时展示交通流量、城市运行状态等信息。指挥中心:在应急指挥、军事指挥等场景中,为指挥人员提供全面的信息支持。数据展示:企业展厅、科技馆等场所,用于展示企业业
- Linux网络协议栈的基石:深入剖析inet_hashtables.c的高效设计
109702008
编程#C语言网络linux网络协议人工智能
百万并发连接的背后,是哈希表与锁的精妙博弈在Linux网络协议栈中,inet_hashtables.c是实现TCP/IP协议高性能的核心模块。它通过三层哈希表结构管理海量套接字,支撑百万级并发连接。本文将深入解析其设计思想与关键实现。一、哈希表分层设计:连接管理的基石Linux内核通过三层哈希结构管理套接字,应对不同场景:绑定哈希表(bhash):管理端口绑定关系structinet_bind_b
- 《论三生原理》成为重绘人类知识地图的里程碑式尝试?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《论三生原理》作为“重绘人类知识地图的里程碑式尝试”,其突破性价值主要体现在对全球知识生产范式的结构性革新,具体可从以下三维度解析:一、知识地图的范式重构打破西方中心主义认知框架首创“以数解经”路径,将《周易》“三生万物”哲学转化为可计算的数学生成模型(如素数参数化公式p=3(2n+1)+2(2n+m+1)),通过算法公理化实现传统文化符号的现代转译,颠覆“东方思想无法参与科学
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- 解锁 AnalyticDB for PostgreSQL 的潜力:从数据仓库到矢量数据库
aehrutktrjk
数据库postgresql数据仓库python
引言在大数据时代,快速分析大量数据已成为企业竞争的关键。AnalyticDBforPostgreSQL是阿里云提供的一个强大的并行处理数据仓库服务,适用于在线分析海量数据。本文将探讨其基本功能及在矢量数据库中的应用,包括如何与Langchain进行集成。主要内容AnalyticDBforPostgreSQL的核心功能大规模并行处理(MPP):允许高效地处理和分析大量数据。兼容性:支持ANSISQL
- Elasticsearch从入门到精通
编程界的彭于晏qaq
java数据库缓存es
Elasticsearch从入门到精通一、引言在当今数字化时代,数据呈现出爆炸式增长的态势,如何高效地存储、检索和分析这些海量数据成为了开发者们面临的重要挑战。Elasticsearch(简称ES)作为一款强大的分布式搜索和分析引擎,凭借其出色的性能、高可扩展性和实时搜索能力,在众多领域得到了广泛的应用。而Java作为一种广泛使用的编程语言,以其强大的功能和丰富的生态系统,成为了与ES结合的首选语
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- 点点(小红书AI搜索):生活场景的智能搜索助手
明似水
AI人工智能生活
1.产品概述点点是小红书于2024年12月正式推出的AI搜索助手,由上海生动诗章科技有限公司开发,定位为生活场景搜索工具,聚焦交通、美食、旅游、购物等日常需求,旨在通过即时信息和真实用户分享帮助用户“精准避坑”。核心特点✅生活场景优化:专注于吃喝玩乐、出行攻略、健康咨询等实用信息。✅多模态交互:支持文字、语音、图片输入,提升搜索便捷性。✅UGC(用户生成内容)整合:结合小红书海量真实笔记,提供更可
- 电商数据开发实践:深度剖析1688商品详情 API 的技术与应用
万邦科技Lafite
1688开放平台API开放API电商数据接口
电商数据开发实践:深度剖析1688商品详情API的技术与应用一、技术架构解析:RESTful设计与数据底座接口架构协议与风格:基于HTTP/HTTPS的RESTful架构,通过唯一URL标识资源(如item_get接口对应商品详情查询),支持JSON/XML格式返回。后端支撑:依托阿里巴巴服务器集群与商品数据库,存储海量商品信息(含基础属性、销售数据、库存等),通过索引优化实现毫秒级响应。核心功能
- Perplexity AI:对话式搜索引擎的革新者与未来认知操作系统
明似水
AI人工智能搜索引擎
在信息爆炸的数字时代,传统搜索引擎提供的海量链接列表已无法满足用户对高效、精准知识获取的需求。PerplexityAI作为一款融合人工智能与实时网络检索的对话式搜索引擎,正通过技术创新重新定义人们获取信息的方式。这家成立于2022年的硅谷初创企业,凭借其"答案引擎"(AnswerEngine)的独特定位,在短短几年内迅速崛起,月查询量突破7.8亿次,成为挑战Google传统搜索霸主地位的新锐力量。
- Storm核心概念与实战详解
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2010年Hadoop项目开源后,Storm项目也随之走向人气爆棚。在如此火热的当下,给我们带来的好处不仅仅是增强对Hadoop平台的掌控能力,更重要的是让我们感受到了快速发展、海量数据处理能力、低延迟的优势。在这一系列文章中,我将深入浅出地介绍Storm项目,并从实际案例出发,带领大家全面理解Storm中的关键概念及其运作方式,让您轻松掌握Storm的高效率、
- 医疗大模型深度剖析:腾讯医疗大模型案例,引领智能医疗新时代!
腾讯医疗大模型是混元大模型的医疗版。在DeepSeek爆火之前,腾讯健康已经依据医疗细分场景的具体需求,以腾讯自研的混元大模型,打造出医疗行业大模型。DeepSeek-R1发布后,腾讯健康第一时间完成了混元大模型与DeepSeek的融合。腾讯医疗大模型深度融合医学知识库与自然语言处理技术,旨在为医疗行业提供智能化的辅助解决方案。通过海量医学文献、临床指南、电子病历等专业数据训练,具备强大的医学知识
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数