二叉查找树的实现

 查找树是一种数据结构,它支持很多动态的操作,包括search,maximum,predecessor,successor,insert,delete等操作!它既可以当作字典,又可以当作优先队列!

        二叉查找树所有的基本操作与树的高度成正比,对于一棵含n个节点的完全二叉树,这些基本操作的最坏的运行情况是O(lgn)这对于一些基本的数据结构来讲,具有优势!

    下面简要的实现这些基本的函数!

     注意二叉查找树的性质 :对于任何一个节点,它的左子树的值是小于该节点的,而它右子树的任意节点是大于该节点的!

 

复制代码
  1 #include <cstdlib>
  2 #include <iostream>
  3 using namespace std;
  4 typedef struct node
  5 {
  6         int data;
  7         struct node* left;
  8         struct node* right;
  9         struct node* parent;
 10 }_node,*pnode;
 11 void insert(pnode &root,int value)
 12 {
 13         pnode y=NULL;
 14         pnode x=root;
 15         while (x!=NULL)
 16         {
 17                 y=x;
 18                 if(value<x->data)
 19                 {
 20                         x=x->left;
 21                 }
 22                 else
 23                 x=x->right;
 24         }
 25         pnode q=new _node;
 26         q->data=value;
 27         q->parent=y;
 28         if(y==NULL)
 29         root=q;
 30         else if(q->data<y->data)
 31         y->left=q;
 32         else
 33         y->right=q;
 34 
 35 
 36 }
 37 //中序遍历
 38 void inorder(pnode root)
 39 {
 40         if(root!=NULL)
 41         {
 42                 inorder(root->left);
 43                 cout<<root->data<<endl;
 44                 inorder(root->right);
 45         }
 46 }
 47  pnode tree_search(pnode root ,int key)
 48 {
 49         if(root==NULL||key==root->data)
 50         return root;
 51         if(key<root->data)
 52            return  tree_search(root->left,key);
 53         else
 54            return  tree_search(root->right,key);
 55 }
 56 //求出这个二叉查找树的最小值
 57 pnode tree_minimum(pnode root)
 58 {
 59         while(root->left!=NULL)
 60         {
 61                 root=root->left;
 62                 tree_minimum(root);
 63         }
 64         return root;
 65 
 66 }
 67 //求出这个二叉查找树的最大值
 68 pnode tree_maxnum(pnode root)
 69 {
 70         while(root->right!=NULL)
 71         {
 72                 root=root->right;
 73                 tree_maxnum(root);
 74         }
 75         return root;
 76 }
 77 //按中序遍历后的后继
 78 pnode tree_successor(pnode x)
 79 {
 80         if(x->right!=NULL)
 81         return  tree_minimum(x->right);
 82         pnode y=x->parent;
 83         while(y!=NULL&&x==y->right)
 84         {
 85              x=y;
 86              y=y->parent;
 87         }
 88 
 89         
 90         return y;
 91 } 
 92 //按中序遍历后的前驱
 93 pnode tree_presuccessor(pnode x)
 94 {
 95         if(x->left!=NULL)
 96         return tree_maxnum(x->left);
 97         pnode y=x->parent;
 98         while(y!=NULL&&x==y->left)
 99         {
100                 x=y;
101                 y=y->parent;
102         }
103         return y;
104 }
105 pnode tree_delete(pnode &root ,pnode z )
106 {
107         pnode y;//确定要删除的节点!
108         pnode x;
109         if(z->left==NULL||z->right==NULL)
110             y=z;
111         else
112             y=tree_successor(z);
113         if(y->left!=NULL)
114             x=y->left;
115         else
116             x=y->right;
117         if(x!=NULL)
118             x->parent=y->parent;
119         if(y->parent==NULL)
120             root=x;
121         else if(y==y->parent->left)
122                 y->parent->left=x;
123         else
124                 y->parent->right=x;
125         if(y!=z)
126              z->data=y->data;
127         return y;
128 
129 }
130 
131 int main(int argc, const char *argv[])
132 {
133 
134         pnode root=NULL;
135         int i;
136         int size;
137         cout<<"you want to build the size of the binary search tree:"<<endl;
138         cin>>size;
139         for (i = 0; i < size ; i++) {
140                 int value;
141                 cin>>value;
142                 insert(root,value);
143         }
144         cout<<"you want to search:";
145         int  search_num;
146         cin>>search_num;
147         pnode q=tree_search(root,search_num);
148         if(q==NULL)
149             cout<<"fail to find"<<endl;
150         else
151             cout<<"find it "<<endl;
152         
153         cout<<"inorder root:"<<endl;
154         inorder(root);
155         cout<<"the max num of the binary tree is :\n";
156         q=tree_maxnum(root);
157         cout<<q->data<<endl;
158         cout<<"the min num of the binary tree is :\n";
159         q=tree_minimum(root);
160         cout<<q->data<<endl;
161         cout<<"please input the number you want to look at the successor of it:\n";
162         int num;
163         cin>>num;
164         pnode q1=tree_search(root,num);
165         q=tree_successor(q1);
166         cout<<"the  successor is:"<<endl;
167         cout<<q->data<<endl;
168         q=tree_presuccessor(q1);
169         cout<<"the presuccessor is :"<<endl;
170         cout<<q->data<<endl;
171         cout<<"after delete the presuccessor :\n";
172         tree_delete(root,q1);
173         inorder(root);
174         return 0;
175 }
复制代码

 

  

 
分类:  数据结构
标签:  数据结构

你可能感兴趣的:(数据结构)