- 曲线的平滑平滑处理
zq4132
c++qtc数据算法
最近在写一些数据处理的程序。经常需要对数据进行平滑处理。直接用FIR滤波器或IIR滤波器都有一个启动问题,滤波完成后总要对数据掐头去尾。因此去找了些简单的数据平滑处理的方法。在一本老版本的《数学手册》中找到了几个基于最小二乘法的数据平滑算法。将其写成了C代码,测试了一下,效果还可以。这里简单的记录一下,算是给自己做个笔记。算法的原理很简单,以五点三次平滑为例。取相邻的5个数据点,可以拟合出一条3次
- 数学运用 -- 使用最小二乘与勒让德多项式拟合离散数据
sz66cm
线性代数矩阵机器学习
使用最小二乘与勒让德多项式拟合离散数据1.准备离散数据假设我们有以下离散数据集:xxxyyy0.01.00.50.81.00.51.50.22.0-0.1我们想用勒让德多项式拟合这些数据,并通过最小二乘法找到勒让德多项式的系数。2.勒让德多项式勒让德多项式的前几项为:P0(x)=1P_0(x)=1P0(x)=1P1(x)=xP_1(x)=xP1(x)=xP2(x)=12(3x2−1)P_2(x)=
- 理论+实践,一文带你读懂线性回归的评价指标
木东居士
关于作者:饼干同学,某人工智能公司交付开发工程师/建模科学家。专注于AI工程化及场景落地,希望和大家分享成长中的专业知识与思考感悟。0x00前言:本篇内容是线性回归系列的第三篇。在《模型之母:简单线性回归&最小二乘法》、《模型之母:简单线性回归&最小二乘法》中我们学习了简单线性回归、最小二乘法,并完成了代码的实现。在结尾,我们抛出了一个问题:在之前的kNN算法(分类问题)中,使用分类准确度来评价算
- 线性代数学习笔记8-4:正定矩阵、二次型的几何意义、配方法与消元法的联系、最小二乘法与半正定矩阵A^T A
Insomnia_X
线性代数学习笔记线性代数矩阵学习
正定矩阵Positivedefinitematrice之前说过,正定矩阵是一类特殊的对称矩阵:正定矩阵满足对称矩阵的特性(特征值为实数并且拥有一套正交特征向量、正/负主元的数目等于正/负特征值的数目)另外,正定矩阵还具有更好的性质(所有特征值都为正实数、所有主元都为正实数、左上角的所有任意k阶(10(x≠0)\mathbf{x}^{T}\boldsymbol{A}\mathbf{x}>0\quad
- C#语言实现最小二乘法算法
2401_86528135
算法c#最小二乘法
最小二乘法(LeastSquaresMethod)是一种常用的拟合方法,用于在数据点之间找到最佳的直线(或其他函数)拟合。以下是一个用C#实现简单线性回归(即一元最小二乘法)的示例代码。1.最小二乘法简介对于一组数据点(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)(x1,y1),(x2,y2),…,(xn,yn),最小二乘
- 计量经济学中的检验——F检验(概念、检验假设、适用条件及操作流程)
佛系研go
计量经济学笔记
接之前的t检验博文F检验的适用场景从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t检验或变量变换或秩和检验等方法。什么是F检验F检验是在零假设下检验统计量具有F分布的统计检验。它最常用于比较已拟合到数据集的统计模型,以识别最适合数据抽样总体的模型。精确的“F检验”主要出现在当模型用最小二乘法拟合数
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- 推荐召回中ALS(交替最小二乘法)算法验证
山水阳泉曲
算法最小二乘法机器学习推荐算法python
文章目录需求流程设计步骤1:数据准备步骤2:模型训练步骤3:评估指标选择步骤4:性能评估代码实现导入依赖Mysql获取数据分批加载到矩阵目标coo_matrixvstackbm25_weight模型训练测试评估完整代码需求为了验证推荐系统中ALS(交替最小二乘)算法的召回效果以及离线数据推荐的效果,我们需要进行一系列的实验步骤。这些步骤包括数据准备、模型训练、评估指标的选择以及最终的性能评估流程设
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 2023年数学建模国赛D题思路+模型+代码+论文
冲冲冲数模
贪心算法线性回归决策树模拟退火算法随机森林逻辑回归支持向量机
一、数学建模常用方法各赛题思路开赛后会第一时间更新数学建模是将实际问题抽象为数学模型,并利用数学方法进行求解和分析的过程。在数学建模中,常用的模型算法非常多,下面列举了一些常见的模型算法。线性回归:线性回归是一种常见的建模方法,用于建立因变量与自变量之间的线性关系模型。通过最小二乘法估计模型参数,可以预测因变量的取值。非线性回归:与线性回归不同,非线性回归建立了非线性关系模型。这种模型常用于描述实
- 岭回归算法
码银
回归数据挖掘人工智能
回归分析方法是利用数理统计方法分析数据,建立自变量和因变量间的回归模型,用于预测因变量变化的分析方法。其中比较经典的是HoerI和Kennard提出的岭回归算法。岭回归算法是在最小二乘法的基础上引|入正则项,使回归模型具有较好泛化能力和稳定性,但岭回归算法并不能处理自变量间非线性相关的情况。岭回归,又称脊回归,是对不适定问题进行回归分析时经常使用的一种正则化方法,是对最小二乘回归的一种补充,岭回归
- 人工智能底层自行实现篇2——多元线性回归
ALGORITHM LOL
人工智能线性回归回归
2多元线性回归1.简介多元线性回归是一种统计建模方法,用于研究多个自变量与一个因变量之间的关系。它是简单线性回归的扩展,简单线性回归只涉及一个自变量和一个因变量。在多元线性回归中,我们可以使用多个自变量来预测一个因变量。多元线性回归的基本原理是通过拟合一个线性模型来描述自变量与因变量之间的关系。这个线性模型通常采用最小二乘法来估计参数,使得模型预测值与实际观测值之间的残差平方和最小化。多元线性回归
- 最小二乘法拟合(C++)
龙行泽雨
计算方法最小二乘法c++机器学习
曲线拟合插值与拟合较为相似,同样是给出了数据点,要求求出一个函数,但是插值要求插值数据必须100%正确,即求出来的函数必须都过这些点,而拟合则不一定,因为拟合的数据点本身就不一定正确,比如拿尺子测量某物体的形变趋势,在测量的过程中,本身就存在测量误差,拟合函数强行经过这些点毫无意义,并且这个测量过程中会产生大量的测量数据,使用插值的方法也不适合。因此我们可以得出使用插值的条件:插值数据必须100%
- 计量经济学计算机输出结果,计量经济学作业答案A..doc
weixin_39850981
计量经济学计算机输出结果
计量经济学作业答案A.计量经济学(本科)第一次作业(FirstAssignment)答案问题1某一元回归模型y=?0+?1x+u中?1的估计量(OLS法-最小二乘法)用表示。检验?1=0的t统计量定义为t=,其中S()为的样本标准差(StandardError)。问题:1)请找出t统计量和F统计量之间的关系。2)请找出F统计量和可决系数()的关系。(2)问题2已知澳大利亚1980-2007年国内生
- 数值分析大作业c语言版,数值分析大作业3
黄之昊
数值分析大作业c语言版
该楼层疑似违规已被系统折叠隐藏此楼查看此楼数值分析大作业3一、设计方案1.使用牛顿迭代法,对原题中给出的,,()的11*21组分别求出原题中方程组的一组解,于是得到一组和对应的。2.对于已求出的,使用分片二次代数插值法对原题中关于的数表进行插值得到。于是产生了z=f(x,y)的11*21个数值解。3.从k=1开始逐渐增大k的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的。当时
- 最小二乘法的计算复杂度Computational complexity of least square regression operation
知识在于积累
数学大类专栏最小二乘法算法
https://math.stackexchange.com/questions/84495/computational-complexity-of-least-square-regression-operationhttps://courses.grainger.illinois.edu/cs357/fa2021/notes/ref-17-least-squares.html
- 介绍一下四参数曲线拟合算法
耄先森吖
四参数曲线拟合是一种数学方法,用于通过拟合一条曲线来描述一组数据。它通常被用于对给定的一组数据进行回归分析,以获得一条函数方程,用于对未来的数据进行预测。四参数曲线拟合的具体方法是:首先确定一条曲线的形式,例如二次曲线或三次曲线等。然后,确定这条曲线的四个参数,即曲线方程中的常数项。最后,使用最小二乘法或其他优化算法,通过拟合给定数据来确定这四个参数的最优值。四参数曲线拟合算法可以用于许多不同的应
- MATLAB实现多元线性回归数学建模算法
AI Dog
数学建模\MATLAB数学建模算法matlab线性回归数据挖掘
多元线性回归是指在一个多维特征空间中,通过线性模型来拟合输入特征与输出之间的关系。多元线性回归的数学表达式为:y=β0+β1x1+β2x2+…+βnxn+ε其中,y为输出变量,x1,x2,…,xn为输入变量,β0,β1,β2,…,βn为回归系数,ε为误差项。通过最小化误差项的平方和来确定回归系数的值,通常使用最小二乘法来求解。多元线性回归可以用于解决多个自变量对因变量的影响问题,它可以用于预测和建
- 移动最小二乘法
EasonZzzzzzz
数学之美最小二乘法机器学习人工智能
移动最小二乘法(MovingLeastSquare,MLS)主要应用于曲线与曲面拟合,该方法基于紧支撑加权函数(即函数值只在有限大小的封闭域中定义大于零,而在域外则定义为零)和多项式基函数,通过加权最小二乘法建立适合散点(Scatteredpoints)模型的拟合函数。其主要特点是:不需对拟合和插值区域进行划分,只需散点模型;由于MLS引入了紧支撑权函数,因此具有局部拟合或插值特点。改变基函数的多
- 基于R语言如何实现偏最小二乘法判别分析(PLS-DA)?
科研那点事儿
偏最小二乘法判别分析,即我常说的PLS-DA(PartialLeastSquaresDiscriminantAnalysis),经常被用来处理分类和判别问题。这种方法和PCA分析方法是比较类似的,区别在于二者是否有监督,一般PCA是无监督的,而PLS-DA是有监督的。 当碰到样本组间差异大而组内差异小的情况,常见的PCA分析方法是可以很好地区分组间差异的,但是遇到样本组间差异不大的情
- 【最详解】如何进行点云的凹凸缺陷检测(opene3D)(完成度80%)
荒野火狐
点云3d点云open3d
文章目录前言实现思路想法1想法2想法3补充实现想法1想法2代码想法3代码总结前言读前须知:首先我们得确保你已经完全知晓相关的基本的数学知识,其中包括用最小二乘法拟合曲二次曲面,以及曲面的曲率详细求解。若还是没弄清楚,则详细请看下面链接。【点云、图像】学习中常见的数学知识及其中的关系与python实战[更新中](建议从一个标题上从上往下看,比较循序渐进)补充:曲率:反映曲面在某一点处的弯曲程度,它与
- 用C#实现最小二乘法(用OxyPlot绘图)
mingupup
C#c#最小二乘法开发语言
最小二乘法介绍✨最小二乘法(LeastSquaresMethod)是一种常见的数学优化技术,广泛应用于数据拟合、回归分析和参数估计等领域。其目标是通过最小化残差平方和来找到一组参数,使得模型预测值与观测值之间的差异最小化。最小二乘法的原理✨线性回归模型将因变量(y)与至少一个自变量(x)之间的关系建立为:在OLS方法中,我们必须选择一个b1和b0的值,以便将y的实际值和拟合值之间的差值的平方和最小
- 刹车距离问题matlab参数估计
日光倾
一个模型拟合实例中车辆刹车距离案例中的最小二乘法参数估计内容及其源代码一、原始数据二、我的计算结果三、视频计算结果四、思考发现实际计算结果和视频中的计算结果不同,即出现了较大的误差。五、最小二乘准则拟合多项式的相关知识在matlab里使用ployfit函数进行拟合
- 机器学习5-线性回归之损失函数
dracularking
机器学习机器学习线性回归损失函数
在线性回归中,我们通常使用最小二乘法(OrdinaryLeastSquares,OLS)来求解损失函数。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。假设有数据集其中是输入特征,是对应的输出。线性回归的模型假设是:其中,是输入特征,是模型的参数。损失函数(成本函数)表示预测值与实际值之间的差异。对于线性回归,损失函数通常采用均方误差(MeanSquaredError,MSE):其
- 机器学习-线性回归法
小旺不正经
人工智能机器学习线性回归人工智能
线性回归算法解决回归问题思想简单,实现容易许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想样本特征只有一个,称为:简单线性回归通过分析问题,确定问题的损失函数或者效用函数通过最优化损失函数或者效用函数,获得机器学习的模型几乎所有参数学习算法都是这样的套路最小二乘法代码实现简单线性回归法加载数据importnumpyasnpimportmatplotlib.pyplota
- 156基于Matlab的光纤陀螺随机噪声和信号
顶呱呱程序
matlab工程应用matlab开发语言降噪效果评估信号处理自适应滤波
基于Matlab的光纤陀螺随机噪声和信号,利用固定步长和可调步长的LMS自适应滤波、最小二乘法、滑动均值三种方法进行降噪处理,最后用阿兰方差评价降噪效果。程序已调通,可直接运行。156信号处理自适应滤波降噪效果评估(xiaohongshu.com)
- MK+Sen趋势检验(长时间栅格数据)
RS GIS遥感 地信学习
pythonMKsen遥感影像
1、Theil-SenMedian方法又称为Sen斜率估计,是一种稳健的非参数统计的趋势计算方法。它通过考虑数据集中所有可能的点对,计算这些点对之间的斜率,并选择这些斜率的中位数来获取整体趋势的稳健估计。Theil-Sen方法提供了一种对数据趋势的鲁棒估计。与传统的最小二乘法相比,这使得Theil-Sen方法对于异常值或离群值更为鲁棒。Theil-Sen方法是确定性的,这意味着对于给定的数据集,它
- 机器学习本科课程 实验1 线性模型
11egativ1ty
机器学习本科课程机器学习人工智能
第三章线性模型3.1一元线性回归3.2多元线性回归3.3对数几率回归,线性判别分析(二选一)3.4类别不均衡3.1一元线性回归——Kaggle房价预测使用Kaggle房价预测数据集:打乱数据顺序,取前70%的数据作为训练集,后30%的数据作为测试集分别以LotArea,BsmtUnfSF,GarageArea三种特征作为模型的输入,SalePrice作为模型的输出在训练集上,使用最小二乘法求解模型
- 最小二乘法
Jarkata
本文为转载,原文链接:最小二乘法(LeastSquares)-mathwater的文章-知乎https://zhuanlan.zhihu.com/p/128083562最小二乘法,为什么叫二乘法?二乘其实是指平方的意思,为什么用平方呢?因为平方可以消除误差正负方向上的差异,单纯的只比较长度。另一种通俗的说法叫距离(学术一点叫欧氏距离),距离不分上下、左右,只有大小,所以可以用来衡量目标与估计的所有
- 基于极大似然法和最小二乘法系统参数辨识matlab仿真,包含GUI界面
软件算法开发
MATLAB程序开发#参数辨识最小二乘法matlab极大似然法系统参数辨识
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理1.极大似然法系统参数辨识2.最小二乘法系统参数辨识5.完整程序1.程序功能描述分别对比基于极大似然法的系统参数辨识以及基于最小二乘法的系统参数辨识,输出起参数辨识收敛曲线以及辨识误差。2.测试软件版本以及运行结果展示MATLAB2022a版本运行3.核心程序c1=[0.0001,0.0001,0.0001,0.0001
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&