- 吴恩达深度学习笔记(七)——机器学习策略
子非鱼icon
深度学习自学笔记深度学习机器学习人工智能神经网络吴恩达
一、正交化通俗的理解就是:要能够诊断出系统性能瓶颈在哪里,以有策略刚好解决这个问题。一个“按钮”只负责解决一件事情。二、单一数字评估指标准确率(precision):在分类器中标记为猫的例子中,有多少是真的猫召回率(recall):对于所有的真猫图片,你的分类器正确识别了多少。但如果有两个评估指标,就很难去选择一个更好的分类器,如下图所示。所以有一个结合这两个指标的标准方法,也即F1分数,定义如下
- 机器学习-分类算法评估标准
赛丽曼
机器学习机器学习分类人工智能
一.准确率accuracy将预测结果和测试集的目标值比较,计算预测正确的百分比准确率越高说明模型效果越好fromsklearnimportdatasetsfromsklearn.model_selectionimporttrain_test_splitfromsklearn.neighborsimportKNeighborsClassifier#加载鸢尾花数据X,y=datasets.load_i
- 【限时免费使用】字节跳动 新中文AI——Trae:直接对标Cursor
查理零世
人工智能AIGCchatgptAI编程
话不多说点此进入https://www.trae.ai/Trae是字节跳动新推出的中文AI客户端IDE,可以理解为国产Cursor,但是现在是免费(目前知道的人不多)内置GPT-4o和Claude-3.5-sonnet它里面使用的不是垃圾的国产大模型,而是GPT-4o以及Claude-3.5-sonnet,代码准确率可以说是现在所有AI的天花板了。支持AI问答、代码自动补全、基于Agent的AI编
- 你有一份待查收的TextIn文档解析内测邀请函!
内测分发人工智能解析文本
近期,为便捷智能文档处理流程,TextIn文档解析推出内测版本,支持内置参数,完成去水印与切边矫正处理,有效提升解析准确率与输出结果质量。如何获得内测资格:内测功能以白名单邀请制的形式进行小范围测试,如有需要,请在后台联系我们进行开通。内测功能详情见下:1内置参数,去除图片和PDF水印实操场景下,部分带有明显水印的文件,会在解析过程中由于水印干扰产生错漏字现象。TextInParseX将去水印功能
- 异常检测的评价指标:ROCAUC等【tips】
太简单了
tips计算机视觉深度学习pytorch
准确率Precision&召回率Recallfromsklearn.metricsimportprecision_recall_curveprecision,recall,thresholds=precision_recall_curve(gt_mask.flatten(),scores.flatten())混淆矩阵:实际预测正负正TP(真正类)FN(假负类)负FP(假正类)TN(真负类)prec
- 工业大模型市场图谱:53个工业大模型全面梳理
大模型常客
人工智能agiai大模型ai大模型大模型应用大模型就业
工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。根据沙丘智库发布的《2024年中国工业大模型应用跟踪报告》,工业大模型是指在通用基础大模型(例如文心一言、通义千问等)的基础上,结合行业&场景数据进行预训练和微调,并进行模型压缩(裁剪、蒸馏等)所形成的大模型,包括通用工业大模型、行业大模型以及
- [实践应用] 深度学习之模型性能评估指标
YuanDaima2048
深度学习工具使用深度学习人工智能损失函数性能评估pytorchpython机器学习
文章总览:YuanDaiMa2048博客文章总览深度学习之模型性能评估指标分类任务回归任务排序任务聚类任务生成任务其他介绍在机器学习和深度学习领域,评估模型性能是一项至关重要的任务。不同的学习任务需要不同的性能指标来衡量模型的有效性。以下是对一些常见任务及其相应的性能评估指标的详细解释和总结。分类任务分类任务是指模型需要将输入数据分配到预定义的类别或标签中。以下是分类任务中常用的性能指标:准确率(
- 月之暗面对谈 Zilliz:长文本和 RAG 如何选择?
冻感糕人~
人工智能大数据算法自然语言处理ai大模型RAG机器学习
01长文本与RAG通用对比准确率:通常情况下长文本优于RAG长文本:可更加综合的去分析所有相关的内容,提取相关数字,生成图表,效果尚可。RAG:更适合找到一段或者是几段可能相关的段落。如果希望大模型能够对问题有全局的认识,比较困难。如,根据上市公司的2020年财务报表,绘制图表,直接用RAG可能效果就不是很好。长文本在准确性上表现好的原因,以及长度与准确性选择长文本处理之后,会做对齐和专门的Ben
- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- 深度学习之基于Tensorflow卷积神经网络水果蔬菜分类识别系统
qq1744828575
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与目标背景:在现代农业、智能零售等领域,自动化分类与识别技术对于提高效率、优化供应链管理具有重要意义。为了响应这一需求,本项目旨在构建一个基于深度学习技术的水果蔬菜分类识别系统。目标:构建一个准确率高、性能稳定的水果蔬菜分类识别模型,利用Tensorflow框架
- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- 【机器学习】Python与深度学习的完美结合——深度学习在医学影像诊断中的惊人表现
空白诗
机器学习深度学习人工智能python
个人主页:空白诗文章目录一、引言二、深度学习在医学影像诊断中的突破1.技术原理2.实际应用3.性能表现三、深度学习在医学影像诊断中的惊人表现1.提高疾病诊断准确率2.辅助制定治疗方案四、深度学习对医疗行业的影响和推动作用一、引言随着人工智能技术的不断发展,深度学习在医学影像诊断领域的应用日益广泛,其强大的特征提取能力和高效的学习机制为医学影像诊断带来了革命性的突破。本文将深入探讨深度学习在医学影像
- 人生跃迁记录史~2019.8.30
小米兮
复习,检测:1.资分(考察耐心,细心,核心是认真踏实):3篇资分,用时约23分钟,准确率87%。还是不够细心和耐心,又掉陷阱里去了。今天开始重复知识框架时,把注意的出题陷阱也回顾一遍,不断提醒自己要注意的地方。粗心还是源于傲慢,不屑。要尊重知识,尊重细节。图片发自App2.言语(逻辑关系):每天刷题15道,一并解析。其他了15道但是都是做过的,存在背答案的嫌疑,要找出逻辑关系,知道是怎么选出来的。
- 身份证二要素实名认证-身份证二要素实名认证接口-身份证二要素接口
挖数据
实名认证身份证生活人工智能大数据python
接口简介:输入姓名和身份证号,通过官方权威核查,实时校验此二要素是否一致,同时返回生日、性别、籍贯等信息官方权威渠道,精准核验,校验100%可靠;高准确率-实时查询零缓存,毫秒级响应,准确率99.99%;专业服务-7*24小时服务,极速响应,为用户保驾护航;支持批量核验功能为保护个人信息,相同姓名或者号码不允许频繁核验接口地址:https://www.wapi.cn/api_detail/62/1
- 选择输入法的竖排排列,保证让你的速度飞起来 | 第0017问
林广军
别小看两者之间这个小小的不同,对于依赖文字为生的律师群体,符合人性的输入法完全就是刚需。今天说个超级冷⻔却与律师实务息息相关的小技巧,超级冷⻔。大部分律师几乎每天都在使用,但可能从未意识到这个问题。搜狗拼音的一个设置小技巧。如果设置得当,能极大提高输入速度及输入的准确率。日常,大部分律师在使用搜狗拼音输入法的时候是这样的:第一张第二张而我的搜狗输入法是这样设置的:第一张第二张第三张看到有什么不同?
- Top-K准确率代码实现
友人Chi
python机器学习开发语言
文章目录Top-K准确率Top-K准确率的代码实现多标签分类准确率的代码实现Top-K准确率Top-K准确率就是用来计算预测结果中概率最大的前K个结果包含正确标签的占比。换句话说,平常我们所说的准确率其实就是Top-1准确率。下面我们还是通过一个例子来进行说明。假如现在有一个用于手写体识别的分类器(10分类),你现在将一张正确标签为3的图片输入到分类器中且得到了如下所示的一个概率分布:logits
- Tensorflow2 如何扩展现有数据集(缩放、随机旋转、水平翻转、平移等),从而提高模型的准确率 -- Tensorflow自学笔记14
青瓷看世界
tensorflow人工智能python
实际生活中的数据集,往往不是标准的数据,而是有倾斜角度、有旋转、有偏移的数据,为了提高数据集的真实性,提高模型预测的准确率,可以用ImageDataGenerator函数来扩展数据集importtensorflowastffromtensorflow.keras.preprocessing.imageimportImageDataGeneratorimage_gen_train=ImageData
- 高考理综怎么复习?就还有100多天了。
潇湘剑儿
理综考试的时间只有两个半小时,而分数有300分题量比较大。虽然体量大,但是分数很多,哪怕是一道填空题,两分也能决定你的以后的命运,所以填空题可能不止两分。这个是需要重视的。并且存在一些前后相关的题目。因此为了提高理综的分数和成绩,主要要重点抓住两个方面:做题速度和准确率。一方面要尽快做完,这是提升成绩的关键,另一方面要尽可能保证做的题目都对,这是保证成绩下限,同时也是获得高分的基础。接下来我主要从
- (二)十分简易快速 自己训练样本 opencv级联lbp分类器 车牌识别
Sisphusssss
opencv人工智能计算机视觉笔记python学习
强烈建议先阅读上一篇博文,此篇博文是上一篇的拓展目录1、haar与lbp分类器的对比2、使用工具对LBP特征类型进行训练3、LBP分类器现象展示4、完整代码贴出5、更新后的工程贴出6、结语1、haar与lbp分类器的对比Haar特征分类器的优缺点:优点:准确性:在训练数据充足且质量高的情况下,Haar分类器可以达到很高的检测准确率。成熟稳定:Haar特征分类器是较早使用的特征检测方法之一,经过多年
- 训练过程训练集的准确率都低于验证集和测试集的准确率可能的原因
Wils0nEdwards
python人工智能深度学习
每一个epoch训练集的准确率都低于验证集和测试集的准确率,这种现象不太常见,可能有以下几个原因:1.数据增强过强如果你在训练集上使用了较强的数据增强(如随机翻转、ColorJitter等),而验证集和测试集仅进行了基础的预处理。这会导致训练集的样本更具挑战性,模型在训练集上的表现不如在验证集和测试集上的表现。2.训练和验证集分布差异训练集、验证集和测试集的分布可能存在差异。如果训练集包含更多的噪
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- 【李尚政轩】功夫不负有心人
李尚政轩
最近我回家就开始写作业,之后上课的听讲状态也比以前好了许多,俗话说得好:“功夫不负有心人。”说的正是为了学习之后成绩提高上来的,经过我的好几次的努力,终于每次每日一练几乎都能达到100分左右,最差的也就是98分,所以我要争取回回都100分,英语当然也不能差,虽然我听讲的状态好,可是有一些问题我还是答不上来,在我思考的时候别的同学都已经答上来了,所以我的答题速度喝准确率还有待提高。有的时候,老师发大
- 【pytorch】TensorBoard的使用
hhhhhhkkkyyy
pytorch人工智能python
TensorBoardTensorBoard是TensorFlow提供的一个可视化工具,用于实时监控、调试和可视化深度学习模型的训练过程和性能指标。虽然它是为TensorFlow设计的,但也可以与其他深度学习框架(如PyTorch)一起使用。下面是一些关于TensorBoard的详细知识和使用方法:可视化功能:Scalars(标量):用于显示训练过程中的标量数据,比如损失和准确率的变化趋势。Gra
- 文字模型训练分析评论(算法实战)
富士达幸运星
算法人工智能机器学习
文字模型训练,尤其是在自然语言处理(NLP)领域,是构建能够理解、解释、生成人类语言系统的核心步骤。这类模型广泛应用于文本分类、情感分析、机器翻译、聊天机器人、摘要生成等多个方面。针对文字模型训练后的分析评论,可以从以下几个方面进行:1.性能评估准确率/错误率:评估模型在测试集上的准确率或错误率是最直接的方式,这能反映模型的基本性能。混淆矩阵:对于分类任务,混淆矩阵可以详细展示模型在各个类别上的表
- 《642件可写的事》
苗_4f9b
16、描述一件诞生在未来,你不知道怎么用的电子产品在2219年的时候,人类的寿命可以计算,准确率高达90%。这是一台类似电脑大小的机器,基本上每个三甲医院都有一台,他们还为此专门设了一个特别的门诊,名为人类寿命咨询门诊,就同现在的生殖中心一样,虽然不是人人需要去看,但需要这方面咨询的人还是不少,往往都是夫妻双方都去,毕竟伴侣是我们生活最久的人,或是为自己的子女的寿命来咨询,爱子之心人皆有之嘛。咨询
- 第T10周:数据增强
OreoCC
深度学习人工智能tensorflow2
>-**本文为[365天深度学习训练营]中的学习记录博客**>-**原作者:[K同学啊]**第10周:数据增强难度:夯实基础⭐⭐语言:Python3、TensorFlow2要求:学会在代码中使用数据增强手段来提高acc请探索更多的数据增强手段并记录在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到
- AI手写文字识别+签字+合同打印
茂密的软件制作
语音识别中文分词全文检索javapython
可识别各种不规则手写字体,并对字迹潦草、模糊等情况进行专项优化,手写中文识别提供各类文字识别的在线服务接口,可直接调用API或使用HTTPSDK对图片中的文字进行多场景、高精度的手写文字识别服务,支持中、英、日、韩、法等20+语言类型,识别准确率可达90%以上;支持涂改痕迹识别与候选字输出,可适用于手写作文、签名等多种场景,使用AI扩散模型推理识图
- sklearn 评估模型 常用函数
小Z资本
sklearn人工智能python
`sklearn.metrics`是scikit-learn库中的一个模块,它提供了许多用于评估预测模型性能的指标和工具。这些指标和工具可以帮助你了解模型在训练集和测试集上的表现,以及模型是否能够很好地泛化到未见过的数据。以下是一些`sklearn.metrics`中常用的函数和指标:1.**分类指标**:-`accuracy_score`:计算分类准确率。-`classification_rep
- 每天一个数据分析题(四百九十五)- 分类算法
跟着紫枫学姐学CDA
数据分析题库数据分析分类数据挖掘
下面有关分类算法的准确率,查全率,F1值的描述,错误的是?A.准确率是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率B.查全率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率C.正确率、查全率和F值取值都在0和1之间,数值越接近0,查准率或查全率就越高D.为了解决准确率和查全率冲突问题,引入了F1分数数据分析认证考试介绍:点击进入题目来源于CDA
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin