- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 一起学语文:一文告诉你高中如何记笔记效率最高?
一起学语文
本文主要是两个部分:一是如何记笔记,分为目的、记什么、误区、小技巧;二是如何归纳整理,分为整理知识体系的四个问题、不同级别的人怎样整理、常见的归纳整理方法。最后推荐康奈尔笔记法及语文学科的思维导图。记笔记的目的1.记忆记笔记最基本的一个作用,就是再一次加深你对内容的记忆。古人也说“手抄一遍,胜读十遍”不是没道理的,在我们运用多种感知器官同时投入识记的效果好,而多种感知又以手到为佳。2.复习便于阶段
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 点云从入门到精通技术详解100篇-点云特征学习模型及其在配准中的应用
格图素书
学习
目录前言应用前景国内外研究现状点云特征提取算法研究现状点云配准算法研究现状相关理论基础2.1深度学习2.1.1深度学习概述2.1.2自编码器2.1.3稀疏编码2.1.4受限玻尔兹曼机2.2多层感知机2.2.1多层感知机概述2.2.2感知器与多层感知机2.2.3多层感知机的训练2.3点云配准方法2.3.1无点对应关系的点云配准方法2.3.2基于对应关系的点云配准方法2.4评价指标2.4.1点云配准评
- 1.人工智能原理
luckyflyyy
人工智能基础学习人工智能python机器学习深度学习
一元一次函数感知器–如何描述直觉MCCulloch-Pitts神经元模型MCCulloch-Pitts神经元模型(McCulloch-PittsNeuronModel)是一种简化的人工神经元模型,由美国心理学家沃伦·麦卡洛克(WarrenMcCulloch)和逻辑学家沃尔特·皮茨(WalterPitts)于1943年提出。这个模型是神经网络和计算神经科学领域的一个重要里程碑,为后来的神经网络研究奠
- Spark MLlib模型训练—分类算法Multilayer Perceptron Classifier
猫猫姐
Spark实战spark-mlspark机器学习
SparkMLlib模型训练—分类算法MultilayerPerceptronClassifierMultilayerPerceptronClassifier(多层感知器分类器,简称MLP)是SparkMLlib中用于分类任务的神经网络模型。MLP是一种前馈神经网络(FeedforwardNeuralNetwork),其架构由输入层、隐藏层和输出层组成。MLP通过反向传播算法(Backpropag
- 销售话术对成单有啥影响
wxl781227
深度学习算法人工智能机器学习
坐席说了哪些话对成单有影响?咱们通常认为客户不需要时,坐席说了一些话会影响成单,那么我们就把这些话和成单之间建立一个映射关系。怎么建立这个关系呢?我们通过一个神经网络来拟合这么个关系,即需要用数据去训练一个神经网络模型(成单概率模型),我们可以使用MLP来实现,MLP是一个多层感知器,能够轻松的模拟输入(坐席说的话)和输出(成单)之间的非线性关系(复杂关系)。实际上就是去训练一个分类器来判断:坐席
- 机器学习12-基本感知器
dracularking
机器学习机器学习人工智能感知器Perceptron
感知器(Perceptron)是一种最简单的人工神经网络结构,由美国心理学家FrankRosenblatt在1957年提出。它是一种单层的前馈神经网络,通常用于二分类问题。基本感知器由多个输入节点、一个输出节点和一组权重参数组成。每个输入节点都与输出节点连接,并且具有一个对应的权重参数,用来调节输入的重要性。感知器的输出是输入的线性组合,通过一个激活函数进行转换,最终输出一个二进制值(通常是0或1
- 日更挑战-神经网络之感知器
愿你我皆是黑马
越不懂的越爱装大家都同等:IT世界没有难不难,只有是否了解过挑战目录问题1:什么是感知器?解答:首先可以先说一下线性函数y=wx+b:对于传入x=x1的时候会输出y1。这时候线上面点用y1+n=wx1+b(n为大于0的数),同理y1-n=wx1+b是线下面的点。那么假设一个随机数a:wx1+b=a,这时(y-a)大于或小于0表示(x1,a)在这个线的上面还是下面。那么a=wx1+(b-y)的结果a
- 机器学习11-前馈神经网络识别手写数字1.0
dracularking
机器学习机器学习神经网络人工智能预测手写数字
在这个示例中,使用的神经网络是一个简单的全连接前馈神经网络,也称为多层感知器(MultilayerPerceptron,MLP)。这个神经网络由几个关键组件构成:1.输入层输入层接收输入数据,这里是一个28x28的灰度图像,每个像素值表示图像中的亮度值。2.Flatten层Flatten层用于将输入数据展平为一维向量,以便传递给后续的全连接层。在这里,我们将28x28的图像展平为一个长度为784的
- 【神经网络】单层感知器
Loong_DQX
感知器神经网络机器学习深度学习
在了解感知机之前的先知道1943年Mccilloch和Pitts所提出的M-P模型。M-P模型其实就是现在的神经网络中的一个神经元,但是与之不同的点在于它没有非线性激活函数激活,也不能这么说,就是没有类似sigmoid或者tanh函数激活,而它用的仅仅是一个阈值去激活。所以它的数学表达式为:此处的f函数就是阈值函数。但是这里的权重w和偏置b都是人为设定的,并不存在学习一说,这就是M-P模型与单层感
- MLP多层感知器+BP算法原理及实战
Loong_DQX
感知器BP算法机器学习深度学习
多层感知器是在感知器的基础上多元化,原来只是用一个感知器,但是单个感知器因为是单输出,所以只能进行二分类的操作,他并不能进行类似异或问题的求解,再次基础上前辈们提出了多层感知器。如上图所示,{a11,a12,a13}所代表的是第一层的神经元,{a21,a22}所代表的是第二层的神经元,图中的w代表的是权重。与单层感知器不同的是这里在前层神经元权重求和后,还有进行一次非线性激活函数激活,最后得到的就
- 深度学习(15)--PyTorch构建卷积神经网络
GodFishhh
深度学习深度学习人工智能
目录一.PyTorch构建卷积神经网络(CNN)详细流程二.graphviz+torchviz使PyTorch网络可视化2.1.可视化经典网络vgg162.2.可视化自己定义的网络一.PyTorch构建卷积神经网络(CNN)详细流程卷积神经网络(ConvolutionalNeuralNetworks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的详细介绍可以
- 《宇宙编年史:真理之书》中说生命是通过吸收能量来感知世界的,隐身术是提升能级后的必然产物
大医之道21
人类是如何感知世界的?为什么施一公说95%的物质我们无从感知?神话故事中的隐身术的本质又是什么?贤真人在其巨著《宇宙编年史-真理之书》中给出了答案。生命是通过五官等感知器官,吸收物质中的相似能量来感知世界的,而我们能量等级的多寡,将直接决定能感知到的世界形态。论据1:感知世界是吸收能量,打开灵洞的过程贤真人在书中指出,我们之所以能认识这个世界,并不是通过五官等感知器官直接感知到,而是通过感官吸收了
- ANN(MLP) 三种预测
取名真难.
机器学习python人工智能深度学习神经网络
目录介绍:一、Mlpforbinaryclassification数据:模型:预测:二、MlpforMulticlassClassification数据:模型:预测:三、MLPforRegression数据:模型:预测:介绍:多层感知器(MultilayerPerceptron,MLP)是一种基于人工神经网络的机器学习算法。它由多个神经元(也称为节点)组成,这些神经元排列在不同的层中,并且每个神经
- 深度学习入门笔记4 深度神经网络
深度学习从入门到放弃
深度学习笔记神经网络深度学习人工智能机器学习算法
多层感知器在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-LayerPerceptron)结构。多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。如果网络中包含一个以上的隐层,则称其为深度人工神经网络。说明:通常我们说的神经网络的
- 深度学习的发展历程和最新进展
稚肩
前沿技术浅谈深度学习人工智能
深度学习是机器学习领域的一个子集,它通过模仿人脑的神经网络结构,使用多层神经网络(深度神经网络)进行学习和模式识别。它的发展经历了多个阶段,早期阶段,冷静期,深度学习复兴时期等。早期阶段(20世纪50年代-80年代)深度学习的雏形可以追溯到上个世纪中叶,当时提出了感知器模型。然而,在当时由于计算能力受限、数据缺乏和算法限制等因素,深度学习的发展受到了限制。感知器模型感知器模型是一种简单的神经网络模
- 机器学习_13_SVM支持向量机、感知器模型
少云清
机器学习机器学习支持向量机人工智能感知器svm
文章目录1感知器模型1.1感知器的思想1.2感知器模型构建1.3损失函数构建、求解2SVM3线性可分SVM3.1线性可分SVM—概念3.2线性可分SVM—SVM模型公式表示3.3线性可分SVM—SVM损失函数3.4优化函数求解3.5线性可分SVM—算法流程3.6线性可分SVM—案例3.7线性可分SVM—总结4SVM的软间隔模型4.1SVM的软间隔模型—概念4.2SVM的软间隔模型—目标函数4.3优
- 【大厂AI课学习笔记】1.4 算法的进步(2)
giszz
学习笔记人工智能学习笔记
关于感知器的兴衰。MORE:感知器的兴衰一、感知器的发明与初期振动在人工智能的历史长河中,感知器(Perceptron)无疑是一个里程碑式的存在。它最初由心理学家FrankRosenblatt在1950年代提出,并在随后的几年中得到了广泛的关注和研究。感知器是一种二元线性分类器,其结构模仿了生物神经元的工作原理,能够通过简单的加权和阈值操作对输入进行分类。感知器的出现引起了巨大的振动。在当时,计算
- 神经网络
Fighting_No1
大数据神经网络
神经网络参考资料:TENSORFLOW系列专题TensorFlow从入门到精通深度学习的概念是从人工神经网络的研究中发展而来的,早期的感知器模型只能解决简单的线性分类问题,后来发现通过增加网络的层数可以解决类似于“异或问题”的线性不可分问题,这种多层的神经网络又被称为多层感知器。对于多层感知器,我们使用BP算法进行模型的训练,但是我们发现BP算法有着收敛速度慢,以及容易陷入局部最优等缺点,导致BP
- 神经网络是模型还是算法,神经网络模型数据处理
阳阳2013哈哈
PHP算法神经网络机器学习
神经网络算法原理4.2.1概述人工神经网络的研究与计算机的研究几乎是同步发展的。1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。神经网络技术在众
- 深度学习使用python建立最简单的神经元neuron
取名真难.
机器学习深度学习python人工智能
目录介绍数据:建模:模型:介绍在深度学习中,神经元通常指的是人工神经元(或感知器),它是深度神经网络中的基本单元。深度学习的神经元模拟了生物神经元的工作原理,但在实现上更加简化和抽象。在深度学习神经元中,每个神经元接收一组输入信号,通过加权求和和激活函数来生成输出信号。每个输入信号都有一个对应的权重,用于控制其对输出信号的影响程度。加权求和之后,通过激活函数进行非线性变换,以生成最终的输出信号。数
- 神经网络建立(结果可变)最小神经元
取名真难.
机器学习神经网络人工智能深度学习python机器学习
目录介绍:初始化:建模:预测:改变结果:介绍:在深度学习中,神经元通常指的是人工神经元(或感知器),它是深度神经网络中的基本单元。深度学习的神经元模拟了生物神经元的工作原理,但在实现上更加简化和抽象。在深度学习神经元中,每个神经元接收一组输入信号,通过加权求和和激活函数来生成输出信号。每个输入信号都有一个对应的权重,用于控制其对输出信号的影响程度。加权求和之后,通过激活函数进行非线性变换,以生成最
- 节选自李笑来老师最新线下大课《新时代个人商业模式的升级》。
快乐作文赵老师
1.强化注意力。注意力是人身上拥有的最重要的价值,在实现个人财富和事业升级的时候它会起到非常关键的作用,它的价值大于时间,大于金钱大于其它身外之物的总和。举例:很多人背英文单词,效果不尽人意,原因是背得方法不对,正确背单词的方法应该尽量调动身体的一切感知器官,利用眼睛、嘴巴、耳朵和手组合的方式把英文单词背诵下来,这个方式的核心就是集中你所有的注意力。人和人之间的差距是从注意力开始出现了差异,就像1
- 关于大模型学习中遇到的4
ringthebell
记录学习
来源:网络相关学习可查看文章:TransformerandPretrainLanguageModels3-4什么是MLP?MLP是多层感知器(MultilayerPerceptron)的缩写,多层感知机(MLP)是一种人工神经网络(ANN)的一种,也称为多层前馈网络(MLFN)、深度前馈神经网络(DFNN)、回归神经网络(RNN),是机器学习中一种有监督学习算法。MLP由输入层、输出层和一个以上的
- 【数学建模】智能算法
自律版光追
数学建模数学建模pythonscikit-learnmatplotlib遗传算法模拟退火算法人工神经网络
文章目录模拟退火算法简介算法流程及应用算法流程算法应用遗传算法遗传算法的原理遗传算法应用模型及算法模型求解人工神经网络概述人工神经元激活函数基本模型感知器BP神经网络RBF神经网络应用智能算法,也称现代优化算法模拟退火算法简介材料统计力学观点:材料中粒子的不同结构对应于粒子的不同能量水平在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温
- 【单层感知器】花语神经网络的原理解析
德天老师
AI故事专栏AI模型专栏机器学习神经网络人工智能深度学习
神经网络感知器(Perceptron)是神经网络中最基础的单元,它的工作原理可以用一个通俗的比喻来解释。假设有一个花园,花园里有各种各样的花,我们要通过花的特征来识别不同的花种。神经网络感知器就像是一个智能的花匠,它能够根据花的特征进行分类和识别。感知器的输入就像是花的特征,比如颜色、形状、大小等等。这些特征被输入到感知器中,感知器会根据这些特征做出决策,判断这个花属于哪一类。感知器内部有一组权重
- 深度学习-多层感知器-建立MLP实现非线性二分类-MLP实现图像多分类
小旺不正经
人工智能深度学习分类人工智能
多层感知器(Multi-LayerPerceptron)(人工神经网络)多层感知器模型框架MLP用于非线性分类预测在不增加高次项数据的情况下,如何通过MLP实现非线性分类预测MLP模型框架MLP实现多分类预测实战准备KerasKeras是一个用Python编写的用于神经网络开发的应用接口,调用开接口可以实现神经网络、卷积神经网络、循环神经网络等常用深度学习算法的开发特点:集成了深度学习中各类成熟的
- 【Day1】《认知尺度》读书心得—北斗
白夜雾语
第一节感想:布局未来是可以实现的,提高自己思维高度与广度,通过数据分析及把握未来科技趋势,提前进入圈子可以最大影响未来及提高自身价值,如果你想在某一圈子有一定的成就,自身与圈子的位置关系至关重要,在圈子里且要更接近核心才能更有发展力。第二节感想:自己与宇宙世界的关系有一个新的认识,没有绝对真实的世界,我们所见所感皆是通过我们的感知器官所接受的,那些不在我们感官接收的信息对于我们是透明或者说我们觉得
- 深度学习与神经网络实现分类实验
小嘤嘤怪学
深度学习神经网络分类
实验目的掌握神经网络及深度学习建模分析掌握使用神经网络实现分类的方法掌握使用Keras框架实现深度学习的方法了解各分类器之间的差异实验环境操作系统:Windows11应用软件:JupyterNotebook实验内容与结果实验总结神经网络可以有多个隐藏层,每个隐藏层拥有若干个神经元,每层神经元与下一层神经元全连接,同层神经元之间不连接,也不存在跨层神经元连接。值得注意的是,由单个感知器构成的一个简单
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement