我的架构演化笔记 9:ElasticSearch的分词器IK Analyzer动态添加分词

需求:动态添加词汇

先设计架构吧,这里用了单机Redis.

我的架构演化笔记 9:ElasticSearch的分词器IK Analyzer动态添加分词_第1张图片

 

计划把词汇放在Redis里,然后ES里利用redis的pub/sub功能获取词汇。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 下面开始安装Redis,

吐个槽:Redis的版本更新还蛮快,我这1.0.2版本还不知道什么时候能够升级到最新版。。。

~~~~~~~

要想修改代码,需要对Lucene的原理有个大概的了解,知道分词器是什么时候以怎样的方式介入到索引过程中的。

为了描述方便,这里拿Lucene 4.0.0的源码作为例子,类---org.apache.lucene.index.DocumentWriter.

文件的140行有

// Tokenize field and add to postingTable
          TokenStream stream = analyzer.tokenStream(fieldName, reader);
          try {
            for (Token t = stream.next(); t != null; t = stream.next()) {
              position += (t.getPositionIncrement() - 1);
              addPosition(fieldName, t.termText(), position++);
              if (++length > maxFieldLength) break;
            }
          } finally {
            stream.close();
          }

 

那么咱们的IK分词器的Analyzer是哪个类呢?

看config/elasticsearch.yml配置来说,

index:
  analysis:
    analyzer:
      ik:
          alias: [ik_analyzer]
          type: org.elasticsearch.index.analysis.IkAnalyzerProvider


然后我找到org.elasticsearch.index.analysis.IkAnalyzerProvider这个类的源代码 
package org.elasticsearch.index.analysis;

import org.elasticsearch.common.inject.Inject;
import org.elasticsearch.common.inject.assistedinject.Assisted;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.env.Environment;
import org.elasticsearch.index.Index;
import org.elasticsearch.index.settings.IndexSettings;
import org.wltea.analyzer.cfg.Configuration;
import org.wltea.analyzer.dic.Dictionary;
import org.wltea.analyzer.lucene.IKAnalyzer;

public class IkAnalyzerProvider extends AbstractIndexAnalyzerProvider<IKAnalyzer> {
    private final IKAnalyzer analyzer;

    @Inject
    public IkAnalyzerProvider(Index index, @IndexSettings Settings indexSettings, Environment env, @Assisted String name, @Assisted Settings settings) {
        super(index, indexSettings, name, settings);
        Dictionary.initial(new Configuration(env));
        analyzer=new IKAnalyzer(indexSettings, settings, env);
    }

    @Override public IKAnalyzer get() {
        return this.analyzer;
    }
}

 所以我认为真正的分词类是:org.wltea.analyzer.lucene.IKAnalyzer

 接下来去看这个类的源码,看看有什么发现!

/**
 * IK 中文分词  版本 5.0.1
 * IK Analyzer release 5.0.1
 * 
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * 源代码由林良益([email protected])提供
 * 版权声明 2012,乌龙茶工作室
 * provided by Linliangyi and copyright 2012 by Oolong studio
 * 
 */
package org.wltea.analyzer.lucene;

import java.io.Reader;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.Tokenizer;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.env.Environment;

/**
 * IK分词器,Lucene Analyzer接口实现
 * 兼容Lucene 4.0版本
 */
public final class IKAnalyzer extends Analyzer{
	
	private boolean useSmart;
	
	public boolean useSmart() {
		return useSmart;
	}

	public void setUseSmart(boolean useSmart) {
		this.useSmart = useSmart;
	}

	/**
	 * IK分词器Lucene  Analyzer接口实现类
	 * 
	 * 默认细粒度切分算法
	 */
	public IKAnalyzer(){
		this(false);
	}
	
	/**
	 * IK分词器Lucene Analyzer接口实现类
	 * 
	 * @param useSmart 当为true时,分词器进行智能切分
	 */
	public IKAnalyzer(boolean useSmart){
		super();
		this.useSmart = useSmart;
	}

    Settings settings;
    Environment environment;

    public IKAnalyzer(Settings indexSetting,Settings settings, Environment environment) {
        super();
        this.settings=settings;
        this.environment= environment;
    }

	/**
	 * 重载Analyzer接口,构造分词组件
	 */
	@Override
	protected TokenStreamComponents createComponents(String fieldName, final Reader in) {
		Tokenizer _IKTokenizer = new IKTokenizer(in , settings, environment);
		return new TokenStreamComponents(_IKTokenizer);
	}

}

可以看到这个类直接继承了org.apache.lucene.analysis.Analyzer

寻找tokenStream方法没有找到,正在疑惑之际,看到了这个:

/**
	 * 重载Analyzer接口,构造分词组件
	 */
	@Override
	protected TokenStreamComponents createComponents(String fieldName, final Reader in) {
		Tokenizer _IKTokenizer = new IKTokenizer(in , settings, environment);
		return new TokenStreamComponents(_IKTokenizer);
	}

看来Lucene1.4.3的版本和Lucene后续版本的接口已经有很多不同,但是原理肯定一样。

打开Lucene4.0.0版本的Analyser类一看,果然有一个方法:

protected abstract TokenStreamComponents createComponents(String fieldName,
      Reader reader);

~~~~~~~~~~

也就是说,本质在于:

有可能是org.wltea.analyzer.lucene.IKAnalyzer.createComponents().getTokenStream()

而根据代码

@Override
	protected TokenStreamComponents createComponents(String fieldName, final Reader in) {
		Tokenizer _IKTokenizer = new IKTokenizer(in , settings, environment);
		return new TokenStreamComponents(_IKTokenizer);
	}

知道关键在于IKTokenizer类。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IKTokenizer的源代码如下:

/**
 * IK 中文分词  版本 5.0.1
 * IK Analyzer release 5.0.1
 * 
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * 源代码由林良益([email protected])提供
 * 版权声明 2012,乌龙茶工作室
 * provided by Linliangyi and copyright 2012 by Oolong studio
 * 

 * 
 */
package org.wltea.analyzer.lucene;

import org.apache.lucene.analysis.Tokenizer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.TypeAttribute;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.env.Environment;
import org.wltea.analyzer.core.IKSegmenter;
import org.wltea.analyzer.core.Lexeme;

import java.io.IOException;
import java.io.Reader;

/**
 * IK分词器 Lucene Tokenizer适配器类
 * 兼容Lucene 4.0版本
 */
public final class IKTokenizer extends Tokenizer {
	
	//IK分词器实现
	private IKSegmenter _IKImplement;
	
	//词元文本属性
	private final CharTermAttribute termAtt;
	//词元位移属性
	private final OffsetAttribute offsetAtt;
	//词元分类属性(该属性分类参考org.wltea.analyzer.core.Lexeme中的分类常量)
	private final TypeAttribute typeAtt;
	//记录最后一个词元的结束位置
	private int endPosition;
	
	/**
	 * Lucene 4.0 Tokenizer适配器类构造函数
	 * @param in
     */
	public IKTokenizer(Reader in , Settings settings, Environment environment){
	    super(in);
	    offsetAtt = addAttribute(OffsetAttribute.class);
	    termAtt = addAttribute(CharTermAttribute.class);
	    typeAtt = addAttribute(TypeAttribute.class);

		_IKImplement = new IKSegmenter(input , settings, environment);
	}

	/* (non-Javadoc)
	 * @see org.apache.lucene.analysis.TokenStream#incrementToken()
	 */
	@Override
	public boolean incrementToken() throws IOException {
		//清除所有的词元属性
		clearAttributes();
		Lexeme nextLexeme = _IKImplement.next();
		if(nextLexeme != null){
			//将Lexeme转成Attributes
			//设置词元文本
			termAtt.append(nextLexeme.getLexemeText().toLowerCase());
			//设置词元长度
			termAtt.setLength(nextLexeme.getLength());
			//设置词元位移
			offsetAtt.setOffset(nextLexeme.getBeginPosition(), nextLexeme.getEndPosition());
			//记录分词的最后位置
			endPosition = nextLexeme.getEndPosition();
			//记录词元分类
			typeAtt.setType(nextLexeme.getLexemeTypeString());			
			//返会true告知还有下个词元
			return true;
		}
		//返会false告知词元输出完毕
		return false;
	}
	
	/*
	 * (non-Javadoc)
	 * @see org.apache.lucene.analysis.Tokenizer#reset(java.io.Reader)
	 */
	@Override
	public void reset() throws IOException {
		super.reset();
		_IKImplement.reset(input);
	}	
	
	@Override
	public final void end() {
	    // set final offset
		int finalOffset = correctOffset(this.endPosition);
		offsetAtt.setOffset(finalOffset, finalOffset);
	}
}

 

代码中有这么一句:

_IKImplement = new IKSegmenter(input , settings, environment);

再来看看IKSegmenter的类源代码:

/**
	 * 分词,获取下一个词元
	 * @return Lexeme 词元对象
	 * @throws java.io.IOException
	 */
	public synchronized Lexeme next()throws IOException{
		Lexeme l = null;
		while((l = context.getNextLexeme()) == null ){
			/*
			 * 从reader中读取数据,填充buffer
			 * 如果reader是分次读入buffer的,那么buffer要  进行移位处理
			 * 移位处理上次读入的但未处理的数据
			 */
			int available = context.fillBuffer(this.input);
			if(available <= 0){
				//reader已经读完
				context.reset();
				return null;
				
			}else{
				//初始化指针
				context.initCursor();
				do{
        			//遍历子分词器
        			for(ISegmenter segmenter : segmenters){
        				segmenter.analyze(context);
        			}
        			//字符缓冲区接近读完,需要读入新的字符
        			if(context.needRefillBuffer()){
        				break;
        			}
   				//向前移动指针
				}while(context.moveCursor());
				//重置子分词器,为下轮循环进行初始化
				for(ISegmenter segmenter : segmenters){
					segmenter.reset();
				}
			}
			//对分词进行歧义处理
			this.arbitrator.process(context, useSmart);
			//将分词结果输出到结果集,并处理未切分的单个CJK字符
			context.outputToResult();
			//记录本次分词的缓冲区位移
			context.markBufferOffset();			
		}
		return l;
	}

终于找到了久违的next()函数,一切奥义尽在这个函数里。

~~~~~~~~

每个词元都是通过while((l = context.getNextLexeme()) == null ){...}

来完成的,继续看context.getNextLexeme()函数。

/**
	 * 返回lexeme 
	 * 
	 * 同时处理合并
	 * @return
	 */
	Lexeme getNextLexeme(){
		//从结果集取出,并移除第一个Lexme
		Lexeme result = this.results.pollFirst();
		while(result != null){
    		//数量词合并
    		this.compound(result);
    		if(Dictionary.getSingleton().isStopWord(this.segmentBuff ,  result.getBegin() , result.getLength())){
       			//是停止词继续取列表的下一个
    			result = this.results.pollFirst(); 				
    		}else{
	 			//不是停止词, 生成lexeme的词元文本,输出
	    		result.setLexemeText(String.valueOf(segmentBuff , result.getBegin() , result.getLength()));
	    		break;
    		}
		}
		return result;
	}

剩下的就是看

Dictionary.getSingleton()

看来使用了全局single instance模式。

那么词典是什么时候加载的呢?

/**
	 * 词典初始化
	 * 由于IK Analyzer的词典采用Dictionary类的静态方法进行词典初始化
	 * 只有当Dictionary类被实际调用时,才会开始载入词典,
	 * 这将延长首次分词操作的时间
	 * 该方法提供了一个在应用加载阶段就初始化字典的手段
	 * @return Dictionary
	 */
	public static Dictionary initial(Configuration cfg){
		if(singleton == null){
			synchronized(Dictionary.class){
				if(singleton == null){
					singleton = new Dictionary();
                    singleton.configuration=cfg;
                    singleton.loadMainDict();
                    singleton.loadSurnameDict();
                    singleton.loadQuantifierDict();
                    singleton.loadSuffixDict();
                    singleton.loadPrepDict();
                    singleton.loadStopWordDict();
                    return singleton;
				}
			}
		}
		return singleton;
	}

也就是调用了Dictionary.initial()函数来加载词典。

那这个函数又是什么时候执行的呢?

~~~~~~~~

我的架构演化笔记 9:ElasticSearch的分词器IK Analyzer动态添加分词_第2张图片

有好几个地方执行,当然每次执行都会判断之前是否执行过,这个通过

if(singleton == null){
			synchronized(Dictionary.class){
				if(singleton == null){

可以看出来。

~~~~~~~~~~~~~~~~

我猜测第1次应该是:

 @Inject
    public IkAnalyzerProvider(Index index, @IndexSettings Settings indexSettings, Environment env, @Assisted String name, @Assisted Settings settings) {
        super(index, indexSettings, name, settings);
        Dictionary.initial(new Configuration(env));
        analyzer=new IKAnalyzer(indexSettings, settings, env);
    }

 

下面回到任务:通过redis来发布词汇和停词。

思路:

1)修改es下面的elasticsearch-analysis-ik-1.2.6.jar,解压缩,将Dictionary.class反编译成java文件,添加如下2个函数

public void addMainWords(Collection<String> words)
  {
    if (words != null) {
      for (String word : words) {
        if (word != null) {
          singleton._MainDict.fillSegment(word.trim().toLowerCase().toCharArray());
        }
      }
    }
  }
  
  public void addStopWords(Collection<String> words)
  {
    if (words != null) {
      for (String word : words) {
        if (word != null) {
          singleton._StopWords.fillSegment(word.trim().toLowerCase().toCharArray());
        }
      }
    }
  }

再打包回elasticsearch-analysis-ik-1.2.6.jar放到服务器里。

可以正常运行,说明这部分代码没有问题。获得了全局的词典集合句柄。

如何从Redis里获取数据呢?

一个办法是写一个线程

内容如下:

package org.wltea.analyzer.dic;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
import java.util.Date;
import java.lang.Thread;
import redis.clients.jedis.Jedis;

import org.elasticsearch.common.logging.ESLogger;
import org.elasticsearch.common.logging.Loggers;
import org.wltea.analyzer.dic.Dictionary;

import redis.clients.jedis.HostAndPort;
import redis.clients.jedis.JedisCluster;

public class DictThread extends Thread {	
	
	private static DictThread dt=null;
	
	public static DictThread getInstance(){
		DictThread result = null;
		synchronized(DictThread.class){
			if(null==dt){
				dt = new DictThread();
				result = dt;
			}
		}
		return result;
	}
	private DictThread() {
		this.logger = Loggers.getLogger("redis-thread");
		this.init();
	}
	
	private Jedis jc=null;
	private ESLogger logger = null;	

	public void run() {
		while (true) {
			this.logger.info("[Redis Thread]" + "*****cycle of redis");
			init();
			pull();
			sleep();
		}
	}

	public void pull() {
		if (null == jc)
			return;
		// 从集合里拉取
		
		ArrayList<String> words = new ArrayList<String>();
		Set set = null;

		// 1拉取主词
		set = jc.smembers("ik_main");
		Iterator t = set.iterator();
		while (t.hasNext()) {
			Object obj = t.next();
			words.add(obj.toString());
		}
		Dictionary.getSingleton().addMainWords(words);
		words.clear();

		// 2拉取停词
		set = jc.smembers("ik_stop");
		t = set.iterator();
		while (t.hasNext()) {
			Object obj = t.next();
			words.add(obj.toString());
		}
		Dictionary.getSingleton().addStopWords(words);
		words.clear();
	}

	private void init() {
		if (null == jc) {
			////Set<HostAndPort> jedisClusterNodes = new HashSet<HostAndPort>();
			// Jedis Cluster will attempt to discover cluster nodes
			// automatically
			//jedisClusterNodes.add(new HostAndPort("192.168.56.200", 6379));
			//jc = new JedisCluster(jedisClusterNodes);
			jc = new Jedis("192.168.56.200",6379);
		}

	}

	private void sleep() {
		// sleep 5 seconds,then loop to next
		try {
			Thread.sleep(5 * 1000);
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}
}


 

下面的问题就是启动这个线程!

 

package org.elasticsearch.index.analysis;

import org.elasticsearch.index.analysis.IkAnalyzerProvider;
import org.elasticsearch.common.inject.Inject;
import org.elasticsearch.common.inject.assistedinject.Assisted;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.env.Environment;
import org.elasticsearch.index.Index;
import org.elasticsearch.index.settings.IndexSettings;
import org.wltea.analyzer.cfg.Configuration;
import org.wltea.analyzer.dic.Dictionary;
import org.wltea.analyzer.lucene.IKAnalyzer;
import org.elasticsearch.common.logging.ESLogger;
import org.elasticsearch.common.logging.Loggers;
import org.wltea.analyzer.dic.DictThread;

public class SpecificIkAnalyzerProvider extends IkAnalyzerProvider {

	private ESLogger logger = null;
	 @Inject
	    public SpecificIkAnalyzerProvider(Index index, @IndexSettings Settings indexSettings, Environment env, @Assisted String name, @Assisted Settings settings) {
	        super(index, indexSettings, env, name, settings);
	        //here, let us start our pull thread... :)	        
	        this.logger = Loggers.getLogger("SpecificIkAnalyzerProvider");
	        this.logger.info("[SpecificIkAnalyzerProvider] system start,begin to start pull redis thread...");
	        //new DictThread().start();
	        DictThread dt = DictThread.getInstance();
	        if(null!=dt){
	        	dt.start();
	        }
	        
	        
	    }
}


系统成功运行,还可以,比较简单。

上面的代码在获取redis那部分其实还有一部分工作要优化,以后有时间再弄吧。

然后修改配置文件,修改分词器为:

index:
  analysis:
    analyzer:
      ik:
          alias: [ik_analyzer]
          type: org.elasticsearch.index.analysis.IkAnalyzerProvider

修改为:

index:
  analysis:
    analyzer:
      ik:
          alias: [ik_analyzer]
          type: org.elasticsearch.index.analysis.SpecificIkAnalyzerProvider

 

PS:吐槽,这网上下的jar反编译工具把我坑惨了,浪费了很多时间!

 

你可能感兴趣的:(架构)