原帖发表在IBM的developerworks网站上,是一个系列的文章,作者郑彦兴,通过讲解和例子演示了Linux中几种IPC的使用方式,我觉得很好,在这里做一个保留,能看完的话Linux IPC的基础是没有问题的了。
一)Linux环境进程间通信(一)管道及有名管道
http://www.ibm.com/developerworks/cn/linux/l-ipc/part1/
二)Linux环境进程间通信(二): 信号
上:http://www.ibm.com/developerworks/cn/linux/l-ipc/part2/index1.html
下:http://www.ibm.com/developerworks/cn/linux/l-ipc/part2/index2.html
三)Linux环境进程间通信(三)消息队列
http://www.ibm.com/developerworks/cn/linux/l-ipc/part3/
四)Linux环境进程间通信(四)信号灯
http://www.ibm.com/developerworks/cn/linux/l-ipc/part4/
五)Linux环境进程间通信(五): 共享内存
上:http://www.ibm.com/developerworks/cn/linux/l-ipc/part5/index1.html
下:http://www.ibm.com/developerworks/cn/linux/l-ipc/part5/index2.html
六)Linux环境进程间通信(六): socket
http://www.ibm.com/developerworks/cn/linux/l-ipc/
==============================================================================================
linux下进程间通信的几种主要手段简介:
管道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管 道读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文 件的I/O函数都可以用于管道,如close、read、write等等。
管道的主要局限性正体现在它的特点上:
管道应用的一个重大限制是它没有名字,因此,只能用于具有亲缘关系的进程间通信,在有名管道(named pipe或FIFO)提出后,该限制得到了克服。FIFO不同于管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即 使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之 间),因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。它们不支持诸如lseek()等文件定位操作。
管道常用于两个方面:(1)在shell中时常会用到管道(作为输入输入的重定向),在这种应用方式下,管道的创建对于用户来说是透明的;(2)用于具有亲缘关系的进程间通信,用户自己创建管道,并完成读写操作。
FIFO可以说是管道的推广,克服了管道无名字的限制,使得无亲缘关系的进程同样可以采用先进先出的通信机制进行通信。
管道和FIFO的数据是字节流,应用程序之间必须事先确定特定的传输"协议",采用传播具有特定意义的消息。
要灵活应用管道及FIFO,理解它们的读写规则是关键。
一、信号及信号来源
信号本质
信号是在软件层次上对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是异步的,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。
信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。
信号来源
信号事件的发生有两个来源:硬件来源(比如我们按下了键盘或者其它硬件故障);软件来源,最常用发送信号的系统函数是kill, raise, alarm和setitimer以及sigqueue函数,软件来源还包括一些非法运算等操作。
三、进程对信号的响应
进程可以通过三种方式来响应一个信号:(1)忽略信号,即对信号不做任何处理,其中,有两个信号不能忽略:SIGKILL及SIGSTOP;(2)捕捉信 号。定义信号处理函数,当信号发生时,执行相应的处理函数;(3)执行缺省操作,Linux对每种信号都规定了默认操作,详细情况请参考[2]以及其它资 料。注意,进程对实时信号的缺省反应是进程终止。
Linux究竟采用上述三种方式的哪一个来响应信号,取决于传递给相应API函数的参数。
一、信号生命周期
从信号发送到信号处理函数的执行完毕
对于一个完整的信号生命周期(从信号发送到相应的处理函数执行完毕)来说,可以分为三个重要的阶段,这三个阶段由四个重要事件来刻画:信号诞生;信号在进程中注册完毕;信号在进程中的注销完毕;信号处理函数执行完毕。相邻两个事件的时间间隔构成信号生命周期的一个阶段。
消息队列(也叫做报文队列)能够克服早期unix通信机制的一些缺点。作为早期unix通信机制之一的信号能够传送的信息量有限,后来虽然POSIX 1003.1b在信号的实时性方面作了拓广,使得信号在传递信息量方面有了相当程度的改进,但是信号这种通信方式更像"即时"的通信方式,它要求接受信号 的进程在某个时间范围内对信号做出反应,因此该信号最多在接受信号进程的生命周期内才有意义,信号所传递的信息是接近于随进程持续的概念 (process-persistent),见 附录 1;管道及有名管道及有名管道则是典型的随进程持续IPC,并且,只能传送无格式的字节流无疑会给应用程序开发带来不便,另外,它的缓冲区大小也受到限制。
消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的(参见 附录 1)。
三、消息队列的限制
每个消息队列的容量(所能容纳的字节数)都有限制,该值因系统不同而不同。
小结:
消息队列与管道以及有名管道相比,具有更大的灵活性,首先,它提供有格式字节流,有利于减少开发人员的工作量;其次,消息具有类型,在实际应用中,可作为 优先级使用。这两点是管道以及有名管道所不能比的。同样,消息队列可以在几个进程间复用,而不管这几个进程是否具有亲缘关系,这一点与有名管道很相似;但 消息队列是随内核持续的,与有名管道(随进程持续)相比,生命力更强,应用空间更大。
一、信号灯概述
信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源,同时,进程也可以修改该标志。除了用于访问控制外,还可用于进程同步。信号灯有以下两种类型:
五、信号灯的限制
1、 一次系统调用semop可同时操作的信号灯数目SEMOPM,semop中的参数nsops如果超过了这个数目,将返回E2BIG错误。SEMOPM的大小特定与系统,redhat 8.0为32。
2、 信号灯的最大数目:SEMVMX,当设置信号灯值超过这个限制时,会返回ERANGE错误。在redhat 8.0中该值为32767。
3、 系统范围内信号灯集的最大数目SEMMNI以及系统范围内信号灯的最大数目SEMMNS。超过这两个限制将返回ENOSPC错误。redhat 8.0中该值为32000。
4、 每个信号灯集中的最大信号灯数目SEMMSL,redhat 8.0中为250。 SEMOPM以及SEMVMX是使用semop调用时应该注意的;SEMMNI以及SEMMNS是调用semget时应该注意的。SEMVMX同时也是semctl调用应该注意的。
采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用 户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据[1]:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存 时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存 中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。
Linux的2.2.x内核支持多种共享内存方式,如mmap()系统调用,Posix共享内存,以及系统V共享内存。linux发行版本如Redhat 8.0支持mmap()系统调用及系统V共享内存,但还没实现Posix共享内存,本文将主要介绍mmap()系统调用及系统V共享内存API的原理及应用。
二、mmap()及其相关系统调用
mmap()系统调用使得进程之间通过映射同一个普通文件实现共享内存。普通文件被映射到进程地址空间后,进程可以向访问普通内存一样对文件进行访问,不必再调用read(),write()等操作。
注:实际上,mmap()系统调用并不是完全为了用于共享内存而设计的。它本身提供了不同于一般对普通文件的访问方式,进程可以像读写内存一样对普通文件的操作。而Posix或系统V的共享内存IPC则纯粹用于共享目的,当然mmap()实现共享内存也是其主要应用之一。
结论:
共享内存允许两个或多个进程共享一给定的存储区,因为数据不需要来回复制,所以是最快的一种进程间通信机制。共享内存可以通过mmap()映射普通文件 (特殊情况下还可以采用匿名映射)机制实现,也可以通过系统V共享内存机制实现。应用接口和原理很简单,内部机制复杂。为了实现更安全通信,往往还与信号 灯等同步机制共同使用。
共享内存涉及到了存储管理以及文件系统等方面的知识,深入理解其内部机制有一定的难度,关键还要紧紧抓住内核使用的重要数据结构。系统V共享内存是以文件 的形式组织在特殊文件系统shm中的。通过shmget可以创建或获得共享内存的标识符。取得共享内存标识符后,要通过shmat将这个内存区映射到本进 程的虚拟地址空间。
一个套接口可以看作是进程间通信的端点(endpoint),每个套接口的名字都是唯一的(唯一的含义是不言而喻的),其他进程可以发现、连接并且与之通 信。通信域用来说明套接口通信的协议,不同的通信域有不同的通信协议以及套接口的地址结构等等,因此,创建一个套接口时,要指明它的通信域。比较常见的是 unix域套接口(采用套接口机制实现单机内的进程间通信)及网际通信域。
5、网络编程中的其他重要概念
下面列出了网络编程中的其他重要概念,基本上都是给出这些概念能够实现的功能,读者在编程过程中如果需要这些功能,可查阅相关概念。
(1)、I/O复用的概念
I/O复用提供一种能力,这种能力使得当一个I/O条件满足时,进程能够及时得到这个信息。I/O复用一般应用在进程需要处理多个描述字的场合。它的一个 优势在于,进程不是阻塞在真正的I/O调用上,而是阻塞在select()调用上,select()可以同时处理多个描述字,如果它所处理的所有描述字的 I/O都没有处于准备好的状态,那么将阻塞;如果有一个或多个描述字I/O处于准备好状态,则select()不阻塞,同时会根据准备好的特定描述字采取 相应的I/O操作。
(2)、Unix通信域
前面主要介绍的是PF_INET通信域,实现网际间的进程间通信。基于Unix通信域(调用socket时指定通信域为PF_LOCAL即可)的套接口可 以实现单机之间的进程间通信。采用Unix通信域套接口有几个好处:Unix通信域套接口通常是TCP套接口速度的两倍;另一个好处是,通过Unix通信 域套接口可以实现在进程间传递描述字。所有可用描述字描述的对象,如文件、管道、有名管道及套接口等,在我们以某种方式得到该对象的描述字后,都可以通过 基于Unix域的套接口来实现对描述字的传递。接收进程收到的描述字值不一定与发送进程传递的值一致(描述字是特定于进程的),但是特们指向内核文件表中 相同的项。
(3)、原始套接口
原始套接口提供一般套接口所不提供的功能:
创建原始套接口需要root权限。
(4)、对数据链路层的访问
对数据链路层的访问,使得用户可以侦听本地电缆上的所有分组,而不需要使用任何特殊的硬件设备,在linux下读取数据链路层分组需要创建SOCK_PACKET类型的套接口,并需要有root权限。
(5)、带外数据(out-of-band data)
如果有一些重要信息要立刻通过套接口发送(不经过排队),请查阅与带外数据相关的文献。
(6)、多播
linux内核支持多播,但是在默认状态下,多数linux系统都关闭了对多播的支持。因此,为了实现多播,可能需要重新配置并编译内核。具体请参考[4]及[2]。
结论:linux套接口编程的内容可以说是极大丰富,同时它涉及到许多的网络背景知识,有兴趣的读者可在[2]中找到比较系统而全面的介绍。
至此,本专题系列(linux环境进程间通信)全部结束了。实际上,进程间通信的一般意义通常指的是消息队列、信号灯和共享内存,可以是posix的,也可以是SYS v的。本系列同时介绍了管道、有名管道、信号以及套接口等,是更为一般意义上的进程间通信机制。