- AI基于深度学习的代码搜索案例(一)
人工智能MOS
人工智能深度学习机器学习
1.背景近年来,人工智能逐渐进入各个领域并展现出了强大的能力。在计算机视觉领域,以ImageNet为例,计算机的图像分类水平已经超过了人类。在自然语言处理(NLP)领域,BERT、XLNet以及MASS也一遍遍的刷新着任务榜单。当人工智能进入游戏领域,也取得了惊人的成绩,在Atari系列游戏中,计算机很容易超过了大部分人类,在围棋比赛中,AlphaGo和AlphaZero也已经超越了人类顶尖棋手。
- An SSL error has occurred and a secure connection to the server cannot be made.
piggy514
ssl网络协议网络
用户访问iOSapp的网络功能提示上述错误。开始以为是服务器ssl配置问题,后来发现是用户在国外,让他换成4g就可以了。再让他换回wifi,发送服务器网址,访问不了,显示ERR_SSL_PROTOCOL_ERROR,进而发现他wifi所在网络的运营商禁止了服务器域名的访问。
- Kissat学习笔记
柯尼塞格475
IC设计c语言算法启发式算法
Kissat学习笔记前言SAT(BooleanSatisfiabilityProblem)是一个NP完全问题,在IC前端设计中,SAT验证是一个重要环节,它要求判定一个布尔公式是否存在一组变量赋值使其为真,于是在十几年间诞生了许多高效的SAT求解器。Kissat求解器曾在SAT竞赛中取得了优异成绩,作为CaDiCal求解器的继承者,Kissat在保持高性能的同时,通过优化内存和简化代码实现了更高的
- 【图像去雾】基于多尺度Retinex实现图像去雾附Matlab代码
Matlab科研辅导帮
图像处理matlab开发语言
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍1.引言雾霾天气严重影响了人们的生活和工作,对图像的清晰度也造成了极大的破坏。图像去雾技术旨在消除图像中的雾霾,恢复图像的真实色彩和细节,在交通监控、遥感成像、医学影像等领域具有广泛的应用价值。近年来,基于Retinex理论的图像去雾方法取得了
- 突破:海量倾斜高斯OPGS Cesium高效渲染!
大势智慧
实景三维三维模型三维建模CesiumOPGS
在重建大师7.0新品发布会上,我们首次推出了倾斜摄影测量高斯飞溅(OPGS)从训练到实时渲染的软件工具解决方案,使得用户能够在常用的重建农场计算节点下,就能够实现城市级地理场景3DOPGS成果的高质量、高效率生产。针对城市级地理场景渲染卡顿问题,今年我们研发团队再次取得新进展,成功在Cesium平台上实现了大规模OPGS成果的高效渲染,为实景三维可视化注入了全新活力。大面积OPGS成果在Cesiu
- 用Lua脚本实现Redis原子操作
Cloud_.
luaredis开发语言
1.环境准备依赖:在pom.xml中添加SpringDataRedis:org.springframework.bootspring-boot-starter-data-redis配置RedisTemplate:@ConfigurationpublicclassRedisConfig{@BeanpublicRedisTemplateredisTemplate(RedisConnectionFact
- ranger集成starrock报错
蘑菇丁
大数据+机器学习+oracle大数据
org.apache.ranger.plugin.client.HadoopException:initConnection:UnabletoconnecttoStarRocksinstance,pleaseprovidevalidvalueoffield:{jdbc.driverClassName}..com.mysql.cj.jdbc.Driver.可能的原因JDBC驱动缺失:运行环境中没有安
- LeNet-5卷积神经网络详解
LChuck
深度学习人工智能神经网络深度学习数据结构计算机视觉AIGC
LeNet-5卷积神经网络详解1.历史背景LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络架构,是深度学习领域的一个重要里程碑。这个网络最初是为了解决手写数字识别问题而设计的,在当时取得了突破性的成果。它的成功不仅证明了卷积神经网络在计算机视觉任务中的有效性,更为后来深度学习的发展奠定了重要基础。图1:LeNet-5网络结构示意图2.网络结构LeNet-5的结构非常优雅且
- Redis线上问题排查指南:常见错误与解决思路
小小鸭程序员
javaspringbootspringcloudspring后端
作为高性能的内存数据库,Redis在线上环境中承担着缓存、队列、计数器等重要角色。然而,面对复杂的生产环境,Redis也难免会遇到各种“疑难杂症”。本文结合实战经验,总结Redis线上问题排查思路与解决方案,助你快速定位问题,恢复业务稳定。一、常见问题分类与排查方向1.连接问题现象:客户端无法连接Redis,返回Connectionrefused或超时错误。排查步骤:检查网络连通性:telnet验
- Adapter-Tuning:高效适配预训练模型的新任务
花千树-010
TuningpromptembeddingAIGC机器学习chatgptpytorch
1.引言近年来,预训练语言模型(PLM)如BERT、GPT和T5在自然语言处理(NLP)任务中取得了巨大成功。然而,Fine-Tuning这些大型模型通常需要大量计算资源,并且每个新任务都需要存储一套完整的微调权重,这导致存储成本高昂。Adapter-Tuning作为一种高效的模型调优方法,允许我们在预训练模型的基础上,通过引入轻量级“Adapter”层来进行任务特定的学习。Adapter层只占用
- VLRMBench :一个涵盖数学推理、幻觉理解、多图像理解等多种任务的视觉-语言奖励模型基准测试数据集
数据集
2025-03-10,由上海交通大学和小红书公司联合创建了VLRMBench数据集。是一个专门用于评估视觉-语言奖励模型的综合性基准测试,包含12,634个问题,覆盖数学推理、幻觉理解和多图像理解三大领域。为视觉-语言奖励模型的全面评估提供了新的标准,推动了该领域的发展。一、研究背景近年来,随着大语言模型和大视觉-语言模型的快速发展,它们在多模态任务中取得了显著进展,广泛应用于医学影像、遥感、自动
- 效率翻倍!超好用的AI+写作API接口汇总
程序员后端
在过去几年里,人工智能(AI)技术经过众多科技公司和科研人员的不懈努力取得了巨大进步,吸引了大众的广泛关注。这些AI技术在应用领域的新闻报道也逐渐走入人们的视野,引发了对其具体应用的浓厚兴趣。今天,我们将聊一聊AI与写作文案的结合。在传统观念中,AI技术通常被限制在有明确定义任务的领域。然而,实际上,AI在创造性任务,如写作方面,也展现出了强大的潜力。人工智能写作软件提供了多种选择,可用于生成长篇
- 软件自动化测试的的设计标准,软件自动化测试的的设计标准和适用范围
weixin_39715538
软件自动化测试的的设计标准
三、自动化测试中应当注意的问题1、不现实的期望测试界内一般对于任何新技术的解决方案都深信不疑,认为可以解决面临所有问题。测试工具也不例外,对新工具持乐观态度已成趋势。人们都期望这种解决方案可以解决目前遇到的所有问题。厂商自然会强调好的和成功的一面,可能会忽略取得持久效益所做的努力。如果管理者期望不实现,那么无论工具从技术角度实现的多么好,都满足不了期望。2、缺乏测试实践经验如果缺乏测试实践经验,测
- 【AI论文】SEAP: 无训练稀疏专家激活修剪,解锁大型语言模型的潜力
东临碣石82
人工智能语言模型深度学习
摘要:大型语言模型在各种自然语言处理任务中取得了显著成功,然而其在推理过程中的高计算成本仍然是一个主要瓶颈。本文介绍了稀疏专家激活修剪(SEAP)方法,这是一种无需训练的修剪方法,通过选择性地保留与任务相关的参数来降低推理开销。受大型语言模型中隐藏状态和激活值的聚类模式启发,SEAP识别出特定于任务的专家激活模式,并在保持任务性能和提高计算效率的同时对模型进行修剪。实验结果表明,SEAP在保持竞争
- 大模型问答机器人如何实现自然交互
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
大模型问答机器人如何实现自然交互关键词:大模型问答机器人,自然语言处理(NLP),深度学习,深度对话,多轮对话,意图理解,信息检索,逻辑推理1.背景介绍1.1问题由来近年来,随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了巨大的突破。特别是深度学习模型在自然语言理解和生成方面的卓越表现,使得基于深度学习的大模型问答机器人(LargeLanguageModel-basedChatbots
- Simple Baselines for Image Restoration
Adagrad
paper深度学习
Abstract.尽管近年来在图像恢复领域取得了长足的进步,但SOTA方法的系统复杂性也在不断增加,这可能会阻碍对方法的分析和比较。在本文中,我们提出了一个简单的基线,超过了SOTA方法,是计算效率。为了进一步简化基线,我们揭示了非线性激活函数,如Sigmoid、ReLU、GELU、Softmax等是不必要的:它们可以用乘法替换或删除。因此,我们从基线推导出一个非线性激活自由网络,即NAFNet。
- Transformer 的原理是什么?
玩人工智能的辣条哥
人工智能transformer深度学习人工智能
环境:Transformer问题描述:Transformer的原理是什么?通俗易懂一点。解决方案:Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,最初由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它在自然语言处理(NLP)领域取得了巨大成功,并逐渐扩展到计算机视觉(CV)和其他领域。Transforme
- YOLOv5涨点优化:原创自研 | 魔改Bottleneck,具备多尺度和特征通道融合的结构
AI小怪兽
YOLOv5原创自研YOLO深度学习人工智能神经网络算法华为
本文原创自研创新改进:魔改Bottleneck,具备多尺度和特征通道融合的结构,该模型在检测准确性方面都取得了良好的效果,尤其在缺陷检测方向。收录YOLOv5原创自研https://blog.csdn.net/m0_63774211/category_12511931.html
- 机器学习入门指南:从 TensorFlow 到 PyTorch
6v6-博客
机器学习tensorflowpytorch
机器学习入门指南:从TensorFlow到PyTorch机器学习(MachineLearning)是人工智能的核心领域之一,近年来在图像识别、自然语言处理、推荐系统等领域取得了巨大进展。本文将从基础概念入手,介绍机器学习的核心知识,并带你快速上手两大主流框架:TensorFlow和PyTorch。机器学习基础什么是机器学习?机器学习是一种通过数据训练模型,使计算机能够自动学习和改进的技术。它主要分
- 【C++项目】从零实现RPC框架「一」:项目准备与前置知识学习
Zfox_
C++从入门到精通c++rpc项目分布式muduojsoncpplinux
个人主页:Zfox_系列专栏:C++从入门到精通目录一:项⽬介绍二:技术选型三:开发环境四:Ubuntu-22.04环境搭建五:第三⽅库使⽤介绍JsonCpp库Json数据格式JsonCpp介绍JsonCpp使⽤Muduo库Muduo库是什么通俗解释Muduo库常⻅接⼝介绍TcpServer类基础介绍EventLoop类基础介绍TcpConnection类基础介绍TcpClient类基础介绍Buf
- 第6篇:Transformer架构详解(下):多头注意力机制与位置编码
Gemini技术窝
transformer深度学习人工智能自然语言处理机器学习chatgptnlp
Transformer模型自提出以来,已经在自然语言处理(NLP)领域取得了巨大的成功。其核心创新包括多头注意力机制和位置编码,这些技术使得Transformer能够高效处理长序列数据。本文将详细介绍多头注意力机制和位置编码的原理、作用及其实现,并通过Python代码示例和应用场景讲解,帮助零基础读者全面理解这些关键技术。我们还将使用幽默的比喻,使这些复杂的概念更加易懂。文章目录多头注意力机制基本
- 高效备考策略:考研英语阅读理解深度剖析
闲虎考研
考研经验考研
随着考研竞争日益激烈,英语作为考研的重要科目,其阅读理解部分成为了考生们的难点和重点,想要在考研英语中取得高分,必须对阅读理解部分进行深入剖析,掌握高效备考策略,本文将从考研英语阅读理解的特点、技巧和方法三个方面进行详细讲解,帮助考生提高阅读理解能力。考研英语阅读理解的特点1、题材广泛:考研英语阅读理解的题材涵盖多个领域,如经济、文化、科技、环保等,考生在备考过程中,需要广泛涉猎各类文章,提高自己
- HIBERNATE - 符合Java习惯的关系数据库持久化
popkiler
Atleap代码读解hibernate数据库javasessionclasspayment
HIBERNATE-符合Java习惯的关系数据库持久化Hibernate2参考文档2.1.1TableofContents前言1.在Tomcat中快速上手1.1.开始Hibernate之旅1.2.第一个可持久化类1.3.映射cat1.4.与猫同乐1.5.结语2.体系结构2.1.总览2.2.持久化对象标识(PersistentObjectIdentity)2.3.JMX集成2.4.JCA支持3.Se
- java实体数据校验validation
秋风未动蝉已先觉
javajava
javax.validationvalidation-api1.1.0.Finalorg.hibernatehibernate-validator5.4.1.Final//实体publicclassEntity{@NotNull(message="name字段值不能为空")privateStringname;@Max(value=20,message="address最大长度为20")privat
- 通义万相2.1:AI视频生成迎来“质变”,运镜、文字、物理规律全面突破
that's boy
人工智能通义万象2.1chatgptopenaiqwenAI作画AI编程
AI视频生成,从“能看”到“惊艳”的跨越在人工智能的浪潮中,AI视频生成无疑是最受瞩目的领域之一。从最初的简单动画到如今的逼真模拟,AI视频生成技术正在快速发展,不断刷新人们的认知。近日,阿里云旗下通义万相视频生成模型宣布了2.1版本的重磅升级,不仅在性能上实现了全面提升,更在运镜、文字生成、物理规律模拟等方面取得了突破性进展,让AI视频生成真正进入了“质变”的新阶段。通义万相2.1的出现,不仅是
- 基于jsp+servlet+mysql实现增删改查
蟹黄味汉堡
mysqlservletjsp
#声明单纯记录学习计算机当中所遇到的问题把解决问题的方法分享给大家希望大佬不要喷我这个小白#链接mysql数据库publicclassBaseDao{publicConnectiongetConnection()throwsClassNotFoundException,SQLException{//url里的demo4为数据库名称Stringurl="jdbc:mysql://localhost:
- MVC设计模式
保护眼睛
JavaEE设计模式MVCmvc
MVC设计模式MVC设计模式MVC设计模式优点MVC设计模式缺点MVC设计模式MVC(ModelViewController)是软件工程中的一种软件架构模式,它把软件系统分为模型、视图和控制器三个基本部分。Model(模型端)Mod封装的是数据源和所有基于对这些数据的操作。在一个组件中,Model往往表示组件的状态和操作这些状态的方法,往往是一系列的公开方法。通过这些公开方法,便可以取得模型端的所
- 【Zinx】Day5-Part4:Zinx 的连接属性设置
YGGP
计算机网络GolangProject服务器golang
目录Day5-Part4:Zinx的连接属性设置给连接添加连接配置的接口连接属性方法的实现测试Zinx-v1.0总结Day5-Part4:Zinx的连接属性设置在Zinx当中,我们使用Server来开启服务并监听指定的端口,当接收到来自客户端的连接请求之后,Zinx新建Connection来管理与client的连接,Connection负责读取client发送给Server的数据(当然,需要拆包)
- LLM Weekly(2025.02.17-02.23)
UnknownBody
LLMDailyLLMWeekly人工智能自然语言处理
本文是LLM系列文章,主要是针对2025.02.17-02.23这一周的LLM相关新闻与文章、GitHub资源分享。网络新闻Grok3Beta——推理代理的时代。Grok发布了Grok3Beta,通过强化学习、扩展计算和多模态理解提供卓越的推理能力。Grok3和Grok3mini在学术基准上取得了高分,其中Grok3在AIME’25上获得了93.3%的分数。Grok3的推理可通过“思考”按钮访问,
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》