C++矩阵类模板(支持实数矩阵与复数矩阵的各种运算)

头文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                 matrix.h
 *
 * Class template of matrix which is designed for basic linear algebra
 * operations such as:
 *              A + x    x + A    A += x    A1 + A2   A1 += A2
 *              A - x    x - A    A -= x    A1 - A2   A1 -= A2
 *              A * x    x * A    A *= x    A1 * A2
 *              A / x    x / A    A /= x
 *              mum,     min,     max       mean      swap
 *              eye,     diag,    trT       trH       norm
 *              trMult   multTr   elemMult  elemMultEq
 *              elemDivd elemDivdEq
 * These operators and functions can be applied to both real matrix and
 * complex matrix.
 *
 * The class also provides the basic math functions such as:
 *              cos    sin    tan    acos   asin   atan
 *              abs    exp    log    log10  sqrt   pow
 * This should include "matrixmath.h" file.
 *
 * When debugging, use #define BOUNDS_CHECK above your "#include matrix.h"
 * line. When done debugging, comment out #define BOUNDS_CHECK for better
 * performance.
 *
 * Zhang Ming, 2010-01 (revised 2010-12), Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef MATRIX_H
#define MATRIX_H


#include <vector.h>


namespace splab
{

    template <typename Type>
    class Matrix
    {

    public:

        // constructors and destructor
        Matrix();
        Matrix( const Matrix<Type> &A );
        Matrix( int rows, int columns, const Type &x = Type(0) );
        Matrix( int rows, int columns, const Type *v );
        ~Matrix();

        // assignments
        Matrix<Type>& operator=( const Matrix<Type> &A );
        Matrix<Type>& operator=( const Type &x );

        // accessors
        Type* operator[]( int i );
        const Type* operator[]( int i ) const;
        Type& operator()( int row, int column );
        const Type& operator()( int row, int column ) const;

        // type conversion
        operator Type*();
        operator const Type*() const;
//        operator Type**();
//        operator const Type**() const;

        // others
        long size() const;
        int dim( int dimension ) const;
        int rows() const;
        int cols() const;
        Matrix<Type>& resize( int rows, int columns );
        Vector<Type> getRow( int row ) const;
        Vector<Type> getColumn( int column ) const;
        void setRow( const Vector<Type> &v, int row );
        void setColumn( const Vector<Type> &v, int column );

        // computed assignment
        Matrix<Type>& operator+=( const Type& );
        Matrix<Type>& operator+=( const Matrix<Type>& );
        Matrix<Type>& operator-=( const Type& );
        Matrix<Type>& operator-=( const Matrix<Type>& );
        Matrix<Type>& operator*=( const Type& );
        // WARNING: element-by-element
        Matrix<Type>& operator*=( const Matrix<Type>& );
        Matrix<Type>& operator/=( const Type& );
        // WARNING: element-by-element
        Matrix<Type>& operator/=( const Matrix<Type>& );

    private:

        // 0-based and 1-based data pointer
        Type *pv0, *pv1;

        // 0-based and 1-based row pointer's pointer
        Type **prow0, **prow1;

        // row number, column number and total number
        int	 nRow;
        int	 nColumn;
        long nTotal;

        void init( int rows, int columns );
        void copyFromArray( const Type *v );
        void setByScalar( const Type &x );
        void destroy();

    };
    // class Matrix

    // input and output
    template<typename Type>
    ostream& operator<<( ostream&, const Matrix<Type>& );
    template<typename Type>
    istream& operator>>( istream&, Matrix<Type>& );

    // arithmetic operators
    template<typename Type>
    Matrix<Type> operator-( const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> operator+( const Matrix<Type>&, const Type& );
    template<typename Type>
    Matrix<Type> operator+( const Type&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> operator+( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> operator-( const Matrix<Type>&, const Type& );
    template<typename Type>
    Matrix<Type> operator-( const Type&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> operator-( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> operator*( const Matrix<Type>&, const Type& );
    template<typename Type>
    Matrix<Type> operator*( const Type&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> operator*( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Vector<Type> operator*( const Matrix<Type>&, const Vector<Type>& );
    template<typename Type>
    Matrix<Type> operator/( const Matrix<Type>&, const Type& );
    template<typename Type>
    Matrix<Type> operator/( const Type&, const Matrix<Type>& );

    // optimizied version of multiplication
    template<typename Type>
    Matrix<Type>& optMult( const Matrix<Type>&, const Matrix<Type>&,
                           Matrix<Type>& );
    template<typename Type>
    Vector<Type>& optMult( const Matrix<Type>&, const Vector<Type>&,
                           Vector<Type>& );

    // element-by-element multiplication and division
    template<typename Type>
    Matrix<Type> elemMult( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> elemDivd( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type>& elemMultEq( Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type>& elemDivdEq( Matrix<Type>&, const Matrix<Type>& );

    // transpose and conjugate transpose
    template<typename Type> Matrix<Type> trT( const Matrix<Type>& );
    template<typename Type> Matrix<Type> trH( const Matrix<Type>& );

    // transpose multiplication
    template<typename Type>
    Matrix<Type> trMult( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Vector<Type> trMult( const Matrix<Type>&, const Vector<Type>& );
    template<typename Type>
    Matrix<Type> multTr( const Matrix<Type>&, const Matrix<Type>& );
    template<typename Type>
    Matrix<Type> multTr( const Vector<Type>&, const Vector<Type>& );
    template<typename Type>
    Matrix<complex<Type> > trMult( const Matrix<complex<Type> >&,
                                   const Matrix<complex<Type> >& );
    template<typename Type>
    Vector<complex<Type> > trMult( const Matrix<complex<Type> >&,
                                   const Vector<complex<Type> >& );
    template<typename Type>
    Matrix<complex<Type> > multTr( const Matrix<complex<Type> >&,
                                   const Matrix<complex<Type> >& );
    template<typename Type>
    Matrix<complex<Type> > multTr( const Vector<complex<Type> >&,
                                   const Vector<complex<Type> >& );

    // unit and diagonal matrix
    template<typename Type> Matrix<Type> eye( int, const Type& );
    template<typename Type> Vector<Type> diag( const Matrix<Type>& );
    template<typename Type> Matrix<Type> diag( const Vector<Type>& );

    // utilities
    template<typename Type> Type norm( const Matrix<Type>& );
    template<typename Type> Type norm( const Matrix<complex<Type> >& );
    template<typename Type> void swap( Matrix<Type>&, Matrix<Type>& );
    template<typename Type> Vector<Type> sum( const Matrix<Type>& );
    template<typename Type> Vector<Type> min( const Matrix<Type>& );
    template<typename Type> Vector<Type> max( const Matrix<Type>& );
    template<typename Type> Vector<Type> mean( const Matrix<Type>& );
    template<typename Type> Matrix<Type> abs( const Matrix<complex<Type> >& );
    template<typename Type> Matrix<Type> arg( const Matrix<complex<Type> >& );
    template<typename Type> Matrix<Type> real( const Matrix<complex<Type> >& );
    template<typename Type> Matrix<Type> imag( const Matrix<complex<Type> >& );
    template<typename Type>
    Matrix<complex<Type> > complexMatrix( const Matrix<Type>& );
    template<typename Type>
    Matrix<complex<Type> > complexMatrix( const Matrix<Type>&,
                                          const Matrix<Type>& );


    #include <matrix-impl.h>

}
// namespace splab


#endif
// MATRIX_H

实现文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                               matrix-impl.h
 *
 * Implementation for Matrix class.
 *
 * Zhang Ming, 2010-01 (revised 2010-12), Xi'an Jiaotong University.
 *****************************************************************************/


/**
 * initialize
 */
template <typename Type>
void Matrix<Type>::init( int rows, int columns )
{
	nRow = rows;
	nColumn = columns;
	nTotal = nRow * nColumn;

	pv0 = new Type[nTotal];
	prow0 = new Type*[nRow];
	prow1 = new Type*[nRow];

	assert( pv0 != NULL );
	assert( prow0 != NULL );
	assert( prow1 != NULL );

	Type *p = pv0;
	pv1 = pv0 - 1;
	for( int i=0; i<nRow; ++i )
	{
		prow0[i] = p;
		prow1[i] = p-1;
		p += nColumn;
	}

	prow1--;
}


/**
 * copy matrix from normal array
 */
template <typename Type>
inline void Matrix<Type>::copyFromArray( const Type *v )
{
	for( long i=0; i<nTotal; ++i )
		pv0[i] = v[i];
}


/**
 * set matrix by a scalar
 */
template <typename Type>
inline void Matrix<Type>::setByScalar( const Type &x )
{
	for( long i=0; i<nTotal; ++i )
		pv0[i] = x;
}


/**
 * destroy the matrix
 */
template <typename Type>
void Matrix<Type>::destroy()
{
	if( pv0 == NULL )
		return ;
	else
		delete []pv0;

	if( prow0 != NULL )
		delete []prow0;

	prow1++;
	if( prow1 != NULL )
		delete []prow1;
}


/**
 * constructors and destructor
 */
template <typename Type>
Matrix<Type>::Matrix()
: pv0(0), pv1(0), prow0(0), prow1(0), nRow(0), nColumn(0), nTotal(0)
{
}

template <typename Type>
Matrix<Type>::Matrix( const Matrix<Type> &A )
{
	init( A.nRow, A.nColumn );
	copyFromArray( A.pv0 );
}

template <typename Type>
Matrix<Type>::Matrix( int rows, int columns, const Type &x )
{
	init( rows,columns );
	setByScalar(x);
}

template <typename Type>
Matrix<Type>::Matrix( int rows, int columns, const Type *arrays )
{
	init( rows,columns );
	copyFromArray( arrays );
}

template <typename Type>
Matrix<Type>::~Matrix()
{
	destroy();
}


/**
 * overload evaluate operator = from matrix to matrix
 */
template <typename Type>
Matrix<Type>& Matrix<Type>::operator=( const Matrix<Type> &A )
{
	if( pv0 == A.pv0 )
		return *this;

	if( nRow == A.nRow && nColumn == A.nColumn )
		copyFromArray( A.pv0 );
	else
	{
		destroy();
		init( A.nRow, A.nColumn );
		copyFromArray( A.pv0 );
	}

	return *this;
}


/**
 * overload evaluate operator = from scalar to matrix
 */
template <typename Type>
inline Matrix<Type>& Matrix<Type>::operator=( const Type &x )
{
	setByScalar( x );

	return *this;
}


/**
 * overload operator [] for 0-offset access
 */
template <typename Type>
inline Type* Matrix<Type>::operator[]( int i )
{
#ifdef BOUNDS_CHECK
	assert( 0 <= i );
	assert( i < nRow );
#endif

	return prow0[i];
}

template <typename Type>
inline const Type* Matrix<Type>::operator[]( int i ) const
{
#ifdef BOUNDS_CHECK
	assert( 0 <= i );
	assert( i < nRow );
#endif

	return prow0[i];
}


/**
 * overload operator () for 1-offset access
 */
template <typename Type>
inline Type& Matrix<Type>::operator()( int row, int column )
{
#ifdef BOUNDS_CHECK
	assert( 1 <= row );
	assert( row <= nRow ) ;
	assert( 1 <= column);
	assert( column <= nColumn );
#endif

	return  prow1[row][column];
}

template <typename Type>
inline const Type& Matrix<Type>::operator()( int row, int column ) const
{
#ifdef BOUNDS_CHECK
	assert( 1 <= row );
	assert( row <= nRow ) ;
	assert( 1 <= column);
	assert( column <= nColumn );
#endif

	return  prow1[row][column];
}


/**
 * type conversion functions
 */
template <typename Type>
inline Matrix<Type>::operator Type*()
{
	return pv0;
}

template <typename Type>
inline Matrix<Type>::operator const Type*() const
{
	return pv0;
}

//template <typename Type>
//inline Matrix<Type>::operator Type**()
//{
//	return prow0;
//}
//
//template <typename Type>
//inline Matrix<Type>::operator const Type**() const
//{
//	return prow0;
//}


/**
 * get the matrix's size
 */
template <typename Type>
inline long Matrix<Type>::size() const
{
	return nTotal;
}


/**
 * get the matrix's dimension
 */
template <typename Type>
int Matrix<Type>::dim( int dimension ) const
{
#ifdef BOUNDS_CHECK
	assert( dimension >= 1);
	assert( dimension <= 2);
#endif

	if( dimension == 1 )
		return nRow;
	else if( dimension == 2 )
		return nColumn;
	else
		return 0;
}

template <typename Type>
inline int Matrix<Type>::rows() const
{
    return nRow;
}

template <typename Type>
inline int Matrix<Type>::cols() const
{
    return nColumn;
}


/**
 * reallocate matrix's size
 */
template <typename Type>
Matrix<Type>& Matrix<Type>::resize( int rows, int columns )
{
	if(  rows == nRow && columns == nColumn )
		return *this;

	destroy();
	init( rows, columns );

	return *this;
}


/**
 * get the matrix's row vector
 */
template <typename Type>
Vector<Type> Matrix<Type>::getRow( int row ) const
{
#ifdef BOUNDS_CHECK
	assert( row >= 0 );
	assert( row < nRow );
#endif

	Vector<Type> tmp( nColumn );
	for( int j=0; j<nColumn; ++j )
		tmp[j] = prow0[row][j];

	return tmp;
}


/**
 * get the matrix's column vector
 */
template <typename Type>
Vector<Type> Matrix<Type>::getColumn( int column ) const
{
#ifdef BOUNDS_CHECK
	assert( column >= 0 );
	assert( column < nColumn );
#endif

	Vector<Type> tmp( nRow );
	for( int i=0; i<nRow; ++i )
		tmp[i] = prow0[i][column];

	return tmp;
}


/**
 * set the matrix's row vector
 */
template <typename Type>
void Matrix<Type>::setRow( const Vector<Type> &v, int row )
{
#ifdef BOUNDS_CHECK
	assert( row >= 0 );
	assert( row < nRow );
	assert( v.dim() == nColumn );
#endif

	for( int j=0; j<nColumn; ++j )
		prow0[row][j] = v[j];
}


/**
 * set the matrix's column vector
 */
template <typename Type>
void Matrix<Type>::setColumn( const Vector<Type> &v, int column )
{
#ifdef BOUNDS_CHECK
	assert( column >= 0 );
	assert( column < nColumn );
	assert( v.dim() == nRow );
#endif

	for( int i=0; i<nRow; ++i )
		prow0[i][column] = v[i];
}


/**
 * compound assignment operators +=
 */
template <typename Type>
Matrix<Type>& Matrix<Type>::operator+=( const Type &x )
{
    Type **rowPtr = prow0;
    Type *colPtr = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtr = *rowPtr++;
        for( int j=0; j<nColumn; ++j )
            *colPtr++ += x;
    }

	return *this;
}

template <typename Type>
Matrix<Type>& Matrix<Type>::operator+=( const Matrix<Type> &rhs )
{
    assert( nRow == rhs.rows() );
    assert( nColumn == rhs.cols() );

    Type **rowPtrL = prow0;
    Type *colPtrL = 0;
    Type **rowPtrR = rhs.prow0;
    const Type *colPtrR = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtrL = *rowPtrL++;
        colPtrR = *rowPtrR++;
        for( int j=0; j<nColumn; ++j )
            *colPtrL++ += *colPtrR++;
    }

	return *this;
}


/**
 * compound assignment operators -=
 */
template <typename Type>
Matrix<Type>& Matrix<Type>::operator-=( const Type &x )
{
    Type **rowPtr = prow0;
    Type *colPtr = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtr = *rowPtr++;
        for( int j=0; j<nColumn; ++j )
            *colPtr++ -= x;
    }

	return *this;
}

template <typename Type>
Matrix<Type>& Matrix<Type>::operator-=( const Matrix<Type> &rhs )
{
    assert( nRow == rhs.rows() );
    assert( nColumn == rhs.cols() );

    Type **rowPtrL = prow0;
    Type *colPtrL = 0;
    Type **rowPtrR = rhs.prow0;
    const Type *colPtrR = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtrL = *rowPtrL++;
        colPtrR = *rowPtrR++;
        for( int j=0; j<nColumn; ++j )
            *colPtrL++ -= *colPtrR++;
    }

	return *this;
}


/**
 * compound assignment operators *=
 */
template <typename Type>
Matrix<Type>& Matrix<Type>::operator*=( const Type &x )
{
    Type **rowPtr = prow0;
    Type *colPtr = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtr = *rowPtr++;
        for( int j=0; j<nColumn; ++j )
            *colPtr++ *= x;
    }

	return *this;
}

// WARNING: this is element-by-element multiplication
template <typename Type>
Matrix<Type>& Matrix<Type>::operator*=( const Matrix<Type> &rhs )
{
    assert( nRow == rhs.rows() );
    assert( nColumn == rhs.cols() );

    Type **rowPtrL = prow0;
    Type *colPtrL = 0;
    Type **rowPtrR = rhs.prow0;
    const Type *colPtrR = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtrL = *rowPtrL++;
        colPtrR = *rowPtrR++;
        for( int j=0; j<nColumn; ++j )
            *colPtrL++ *= *colPtrR++;
    }

	return *this;
}


/**
 * compound assignment operators /=
 */
template <typename Type>
Matrix<Type>& Matrix<Type>::operator/=( const Type &x )
{
    Type **rowPtr = prow0;
    Type *colPtr = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtr = *rowPtr++;
        for( int j=0; j<nColumn; ++j )
            *colPtr++ /= x;
    }

	return *this;
}

// WARNING: this is element-by-element division
template <typename Type>
Matrix<Type>& Matrix<Type>::operator/=( const Matrix<Type> &rhs )
{
    assert( nRow == rhs.rows() );
    assert( nColumn == rhs.cols() );

    Type **rowPtrL = prow0;
    Type *colPtrL = 0;
    Type **rowPtrR = rhs.prow0;
    const Type *colPtrR = 0;

    for( int i=0; i<nRow; ++i )
    {
        colPtrL = *rowPtrL++;
        colPtrR = *rowPtrR++;
        for( int j=0; j<nColumn; ++j )
            *colPtrL++ /= *colPtrR++;
    }

	return *this;
}


/**
 * Overload the output stream function.
 */
template <typename Type>
ostream& operator<<( ostream &out, const Matrix<Type> &A )
{
	int rows = A.rows();
	int columns = A.cols();

	out << "size: " << rows << " by " << columns << "\n";
	for( int i=0; i<rows; ++i )
	{
		for( int j=0; j<columns; ++j )
			out << A[i][j] << "\t";
		out << "\n";
	}

	return out;
}


/**
 * Overload the intput stream function.
 */
template <typename Type>
istream& operator>>( istream &in, Matrix<Type> &A )
{
	int rows, columns;
	in >> rows >> columns;

	if( !( rows == A.rows() && columns == A.cols() ) )
		A.resize( rows, columns );

	for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			in >> A[i][j];

	return in;
}


/**
 * get negative matrix
 */
template<typename Type>
Matrix<Type> operator-( const Matrix<Type> &A )
{
	int rows = A.rows();
	int columns = A.cols();

	Matrix<Type> tmp( rows, columns );
	for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			tmp[i][j] = -A[i][j];

	return tmp;
}


/**
 * matrix-scalar addition
 */
template<typename Type>
inline Matrix<Type> operator+( const Matrix<Type> &A, const Type &x )
{
	Matrix<Type> tmp( A );
	return tmp += x;
}

template<typename Type>
inline Matrix<Type> operator+( const Type &x, const Matrix<Type> &A )
{
	return A + x;
}


/**
 * matrix-matrix addition
 */
template<typename Type>
inline Matrix<Type> operator+( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	Matrix<Type> tmp( A1 );
	return tmp += A2;
}


/**
 * matrix-scalar subtraction
 */
template<typename Type>
inline Matrix<Type> operator-( const Matrix<Type> &A, const Type &x )
{
	Matrix<Type> tmp( A );
	return tmp -= x;
}

template<typename Type>
inline Matrix<Type> operator-( const Type &x, const Matrix<Type> &A )
{
	Matrix<Type> tmp( A );
	return -tmp += x;
}


/**
 * matrix-matrix subtraction
 */
template<typename Type>
inline Matrix<Type> operator-( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	Matrix<Type> tmp( A1 );
	return tmp -= A2;
}


/**
 * matrix-scaling multiplication
 */
template <typename Type>
inline Matrix<Type> operator*( const Matrix<Type> &A, const Type &x )
{
	Matrix<Type> tmp( A );
	return tmp *= x;
}

template <typename Type>
inline Matrix<Type> operator*( const Type &x, const Matrix<Type> &A )
{
	return A * x;
}


/**
 * matrix-matrix multiplication
 */
template <typename Type>
Matrix<Type> operator*( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	assert( A1.cols() == A2.rows() );

	int rows = A1.rows();
	int columns = A2.cols();
//	int K = A1.cols();

	Matrix<Type> tmp( rows, columns );
//	for( int i=0; i<rows; ++i )
//		for( int j=0; j<columns; ++j )
//		{
//            tmp[i][j] = 0;
//			for( int k=0; k<K; ++k )
//			    tmp[i][j] += A1[i][k] * A2[k][j];
//		}

    mult( A1, A2, tmp );

	return tmp;
}


/**
 * matrix-vector multiplication
 */
template <typename Type>
Vector<Type> operator*( const Matrix<Type> &A, const Vector<Type> &b )
{
	assert( A.cols() == b.dim() );

	int rows = A.rows();
//	int columns = A.cols();

	Vector<Type> tmp(rows);
//	for( int i=0; i<rows; ++i )
//	{
//		Type sum = 0;
//		for( int j=0; j<columns; ++j )
//			sum += A[i][j] * v[j];
//		tmp[i] = sum;
//	}

    mult( A, b, tmp );

	return tmp;
}


/**
 * matrix-scalar division
 */
template <typename Type>
inline Matrix<Type> operator/( const Matrix<Type> &A, const Type &x )
{
	Matrix<Type> tmp( A );
	return tmp /= x;
}

template <typename Type>
Matrix<Type> operator/( const Type &x, const Matrix<Type> &A )
{
	int rows = A.rows();
	int clumns = A.cols();

	Matrix<Type> tmp( rows,clumns );
	for( int i=0; i<rows; ++i )
		for( int j=0; j<clumns; ++j )
			tmp[i][j] = x / A[i][j];

	return tmp;
}


/**
 * This is an optimized version of matrix multiplication,
 * where the destination matrix has already been allocated.
 */
template <typename Type>
Matrix<Type>& mult( const Matrix<Type> &A, const Matrix<Type> &B,
                    Matrix<Type> &C )
{
    int M = A.rows();
    int N = B.cols();
    int K = A.cols();

    assert( B.rows() == K );

    C.resize( M, N );
    Type        sum;
    const Type  *pRow,
                *pCol;

    for( int i=0; i<M; i++ )
        for( int j=0; j<N; ++j )
        {
            pRow  = &A[i][0];
            pCol  = &B[0][j];
            sum = 0;

            for( int k=0; k<K; ++k )
            {
                sum += (*pRow) * (*pCol);
                pRow++;
                pCol += N;
            }
            C[i][j] = sum;
        }
    return C;
}


/**
 * This is an optimized version of matrix and vector multiplication,
 * where the destination vector has already been allocated.
 */
template <typename Type>
Vector<Type>& mult( const Matrix<Type> &A, const Vector<Type> &b,
                    Vector<Type> &c )
{
    int M = A.rows();
    int N = A.cols();

    assert( b.size() == N );

    c.resize( M );
    Type        sum;
    const Type  *pRow,
                *pCol;

    for( int i=0; i<M; i++ )
    {
        pRow  = &A[i][0];
        pCol  = &b[0];
        sum = 0;

        for( int j=0; j<N; ++j )
        {
            sum += (*pRow) * (*pCol);
            pRow++;
            pCol++;
        }
        c[i] = sum;
    }
    return c;
}


/**
 * matrix-matrix elementwise multiplication
 */
template<typename Type>
inline Matrix<Type> elemMult( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	Matrix<Type> tmp( A1 );
	return tmp *= A2;
}

template <typename Type>
inline Matrix<Type>& elemMultEq( Matrix<Type> &A1, const Matrix<Type> &A2 )
{
    return A1 *= A2;
}


/**
 * matrix-matrix elementwise division
 */
template <typename Type>
inline Matrix<Type> elemDivd( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	Matrix<Type> tmp( A1 );
	return tmp /= A2;
}

template <typename Type>
inline Matrix<Type>& elemDivdEq( Matrix<Type> &A1, const Matrix<Type> &A2 )
{
    return A1 /= A2;
}


/**
 * matrix tranpose
 */
template <typename Type>
Matrix<Type> trT( const Matrix<Type> &A )
{
	int rows = A.cols();
	int clumns = A.rows();

	Matrix<Type> tmp( rows, clumns );
	for( int i=0; i<rows; ++i )
		for( int j=0; j<clumns; ++j )
			tmp[i][j] = A[j][i];

	return tmp;
}


/**
 * matrix conjugate tranpose
 */
template <typename Type>
Matrix<Type> trH( const Matrix<Type> &A )
{
	int rows = A.cols();
	int clumns = A.rows();

	Matrix<Type> tmp( rows, clumns );
	for( int i=0; i<rows; ++i )
		for( int j=0; j<clumns; ++j )
			tmp[i][j] = conj(A[j][i]);

	return tmp;
}


/**
 * matrix-matrix tranpose multiplication: A^T * B.
 */
template <typename Type>
Matrix<Type> trMult( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	assert( A1.rows() == A2.rows() );

	int rows = A1.cols();
	int columns = A2.cols();
	int K = A1.rows();

	Matrix<Type> tmp( rows, columns );
//	for( int i=0; i<rows; ++i )
//		for( int j=0; j<columns; ++j )
//		{
//			Type sum = 0;
//			for( int k=0; k<K; ++k )
//			   sum += A1[k][i] * A2[k][j];
//			tmp[i][j] = sum;
//		}
    for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			for( int k=0; k<K; ++k )
			   tmp[i][j] += A1[k][i] * A2[k][j];

	return tmp;
}


/**
 * matrix-vector tranpose multiplication: A^T * b.
 */
template <typename Type>
Vector<Type> trMult( const Matrix<Type> &A, const Vector<Type> &v )
{
	assert( A.rows() == v.dim() );

	int rows = A.rows();
	int columns = A.cols();

	Vector<Type> tmp( columns );
//	for( int i=0; i<columns; ++i )
//	{
//		Type sum = 0;
//		for( int j=0; j<rows; ++j )
//			sum += A[j][i] * v[j];
//		tmp[i] = sum;
//	}
    for( int i=0; i<columns; ++i )
		for( int j=0; j<rows; ++j )
			tmp[i] += A[j][i] * v[j];

	return tmp;
}


/**
 * matrix-matrix tranpose multiplication: A * B^T.
 */
template <typename Type>
Matrix<Type> multTr( const Matrix<Type> &A1, const Matrix<Type> &A2 )
{
	assert( A1.cols() == A2.cols() );

	int rows = A1.rows();
	int columns = A2.rows();
	int K = A1.cols();

	Matrix<Type> tmp( rows, columns );
//	for( int i=0; i<rows; ++i )
//		for( int j=0; j<columns; ++j )
//		{
//			Type sum = 0;
//			for( int k=0; k<K; ++k )
//			   sum += A1[i][k] * A2[j][k];
//			tmp[i][j] = sum;
//		}
    for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			for( int k=0; k<K; ++k )
			   tmp[i][j] += A1[i][k] * A2[j][k];

	return tmp;
}


/**
 * vector-vector tranpose multiplication: a * b^T.
 */
template <typename Type>
Matrix<Type> multTr( const Vector<Type> &a, const Vector<Type> &b )
{
	int rows = a.dim();
	int columns = b.dim();

	Matrix<Type> tmp( rows, columns );
	for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			tmp[i][j] = a[i]*b[j];

	return tmp;
}


/**
 * matrix-matrix tranpose multiplication: A^H * B.
 */
template <typename Type>
Matrix<complex<Type> > trMult( const Matrix<complex<Type> > &A1,
                               const Matrix<complex<Type> > &A2 )
{
	assert( A1.rows() == A2.rows() );

	int rows = A1.cols();
	int columns = A2.cols();
	int K = A1.rows();

	Matrix<complex<Type> > tmp( rows, columns );
//	for( int i=0; i<rows; ++i )
//		for( int j=0; j<columns; ++j )
//		{
//			Type sum = 0;
//			for( int k=0; k<K; ++k )
//			   sum += A1[k][i] * A2[k][j];
//			tmp[i][j] = sum;
//		}
    for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			for( int k=0; k<K; ++k )
			   tmp[i][j] += conj(A1[k][i]) * A2[k][j];

	return tmp;
}


/**
 * matrix-vector tranpose multiplication: A^H * b.
 */
template <typename Type>
Vector<complex<Type> > trMult( const Matrix<complex<Type> > &A,
                               const Vector<complex<Type> > &v )
{
	assert( A.rows() == v.dim() );

	int rows = A.rows();
	int columns = A.cols();

	Vector<complex<Type> > tmp( columns );
//	for( int i=0; i<columns; ++i )
//	{
//		Type sum = 0;
//		for( int j=0; j<rows; ++j )
//			sum += A[j][i] * v[j];
//		tmp[i] = sum;
//	}
    for( int i=0; i<columns; ++i )
		for( int j=0; j<rows; ++j )
			tmp[i] += conj(A[j][i]) * v[j];

	return tmp;
}


/**
 * matrix-matrix tranpose multiplication: A * B^H.
 */
template <typename Type>
Matrix<complex<Type> > multTr( const Matrix<complex<Type> > &A1,
                               const Matrix<complex<Type> > &A2 )
{
	assert( A1.cols() == A2.cols() );

	int rows = A1.rows();
	int columns = A2.rows();
	int K = A1.cols();

	Matrix<complex<Type> > tmp( rows, columns );
//	for( int i=0; i<rows; ++i )
//		for( int j=0; j<columns; ++j )
//		{
//			Type sum = 0;
//			for( int k=0; k<K; ++k )
//			   sum += A1[i][k] * A2[j][k];
//			tmp[i][j] = sum;
//		}
    for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			for( int k=0; k<K; ++k )
			   tmp[i][j] += A1[i][k] * conj(A2[j][k]);

	return tmp;
}


/**
 * vector-vector tranpose multiplication: a * b^H.
 */
template <typename Type>
Matrix<complex<Type> > multTr( const Vector<complex<Type> > &a,
                               const Vector<complex<Type> > &b )
{
	int rows = a.dim();
	int columns = b.dim();

	Matrix<complex<Type> > tmp( rows, columns );
	for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			tmp[i][j] = a[i]*conj(b[j]);

	return tmp;
}


/**
 * Generate the identity matrix.
 */
template <typename Type>
Matrix<Type> eye( int N, const Type &x )
{
    Matrix<Type> tmp( N, N );
	for( int i=0; i<N; ++i )
		tmp[i][i] = x;

	return tmp;
}


/**
 * Get the diagonal entries of matrix.
 */
template <typename Type>
Vector<Type> diag( const Matrix<Type> &A )
{
	int nColumn = A.rows();
	if( nColumn > A.cols() )
		nColumn = A.cols();

	Vector<Type> tmp( nColumn );
	for( int i=0; i<nColumn; ++i )
		tmp[i] = A[i][i];

	return tmp;
}


/**
 * Generate the diagonal of matrix by given its diagonal elements.
 */
template <typename Type>
Matrix<Type> diag( const Vector<Type> &d )
{
	int N = d.size();

	Matrix<Type> tmp( N, N );
	for( int i=0; i<N; ++i )
		tmp[i][i] = d[i];

	return tmp;
}


/**
 * Compute Frobenius norm of matrix.
 */
template <typename Type>
Type norm( const Matrix<Type> &A )
{
	int m = A.rows();
	int n = A.cols();

	Type sum = 0;
	for( int i=1; i<=m; ++i )
		for( int j=1; j<=n; ++j )
            sum += A(i,j) * A(i,j);

	return sqrt(sum);
}

template <typename Type>
Type norm( const Matrix<complex<Type> > &A )
{
	int m = A.rows();
	int n = A.cols();

	Type sum = 0;
	for( int i=1; i<=m; ++i )
		for( int j=1; j<=n; ++j )
            sum += norm(A(i,j));

	return sqrt(sum);
}


/**
 * Swap two matrixes.
 */
template <typename Type> void swap( Matrix<Type> &lhs, Matrix<Type> &rhs )
{
    int m = lhs.rows();
	int n = lhs.cols();

	assert( m == rhs.rows() );
	assert( n == rhs.cols() );

	for( int i=1; i<=m; ++i )
		for( int j=1; j<=n; ++j )
            swap( lhs(i,j), rhs(i,j) );
}


/**
 * Matrix's column vecotrs sum.
 */
template <typename Type>
Vector<Type> sum( const Matrix<Type> &A )
{
	int m = A.rows();
	int n = A.cols();
	Vector<Type> sum(n);

	for( int j=1; j<=n; ++j )
		for( int i=1; i<=m; ++i )
            sum(j) += A(i,j);

	return sum;
}


/**
 * Minimum of matrix's column vecotrs.
 */
template <typename Type>
Vector<Type> min( const Matrix<Type> &A )
{
	int m = A.rows();
	int n = A.cols();
	Vector<Type> sum(n);

	for( int j=1; j<=n; ++j )
	{
	    Type tmp = A(1,j);
        for( int i=2; i<m; ++i )
            if( tmp > A(i,j) )
                tmp = A(i,j);
        sum(j) = tmp;
	}

	return sum;
}


/**
 * Maximum of matrix's column vecotrs.
 */
template <typename Type>
Vector<Type> max( const Matrix<Type> &A )
{
	int m = A.rows();
	int n = A.cols();
	Vector<Type> sum(n);

	for( int j=1; j<=n; ++j )
	{
	    Type tmp = A(1,j);
        for( int i=2; i<m; ++i )
            if( tmp < A(i,j) )
                tmp = A(i,j);
        sum(j) = tmp;
	}

	return sum;
}


/**
 * Matrix's column vecotrs mean.
 */
template <typename Type>
inline Vector<Type> mean( const Matrix<Type> &A )
{
	return sum(A) / Type(A.rows());
}


/**
 * Convert real matrix to complex matrix.
 */
template <typename Type>
Matrix<complex<Type> > complexMatrix( const Matrix<Type> &rA )
{
	int rows = rA.rows();
	int columns = rA.cols();

    Matrix<complex<Type> > cA( rows, columns );
    for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			cA[i][j] = rA[i][j];

    return cA;
}

template <typename Type>
Matrix<complex<Type> > complexMatrix( const Matrix<Type> &mR,
                                      const Matrix<Type> &mI )
{
	int rows = mR.rows();
	int columns = mR.cols();

	assert( rows == mI.rows() );
	assert( columns == mI.cols() );

    Matrix<complex<Type> > cA( rows, columns );
    for( int i=0; i<rows; ++i )
		for( int j=0; j<columns; ++j )
			cA[i][j] = complex<Type>( mR[i][j], mI[i][j] );

    return cA;
}


/**
 * Get magnitude of a complex matrix.
 */
template <typename Type>
Matrix<Type> abs( const Matrix<complex<Type> > &A )
{
    int m = A.rows(),
        n = A.cols();
    Matrix<Type> tmp( m, n );

    for( int i=0; i<m; ++i )
        for( int j=0; j<n; ++j )
            tmp[i][j] = abs( A[i][j] );

    return tmp;
}


/**
 * Get angle of a complex matrix.
 */
template <typename Type>
Matrix<Type> arg( const Matrix<complex<Type> > &A )
{
    int m = A.rows(),
        n = A.cols();
    Matrix<Type> tmp( m, n );

    for( int i=0; i<m; ++i )
        for( int j=0; j<n; ++j )
            tmp[i][j] = arg( A[i][j] );

    return tmp;
}


/**
 * Get real part of a complex matrix.
 */
template <typename Type>
Matrix<Type> real( const Matrix<complex<Type> > &A )
{
    int m = A.rows(),
        n = A.cols();
    Matrix<Type> tmp( m, n );

    for( int i=0; i<m; ++i )
        for( int j=0; j<n; ++j )
            tmp[i][j] = A[i][j].real();

    return tmp;
}


/**
 * Get imaginary part of a complex matrix.
 */
template <typename Type>
Matrix<Type> imag( const Matrix<complex<Type> > &A )
{
    int m = A.rows(),
        n = A.cols();
    Matrix<Type> tmp( m, n );

    for( int i=0; i<m; ++i )
        for( int j=0; j<n; ++j )
            tmp[i][j] = A[i][j].imag();

    return tmp;
}

测试代码:

/*****************************************************************************
 *                               matrix_test.cpp
 *
 * Matrix class testing.
 *
 * Zhang Ming, 2010-01 (revised 2010-12), Xi'an Jiaotong University.
 *****************************************************************************/


#define BOUNDS_CHECK

#include <iostream>
#include <iomanip>
#include <matrix.h>


using namespace std;
using namespace splab;


typedef double  Type;
const   int     M = 3;
const   int     N = 3;


int main()
{
	Type x;

	Matrix<Type> m1;
	m1.resize( M, N );
	x = 1.0;
	m1 = x;
	cout << "matrix m1 : " << m1 << endl;

	x = 2.0;
	Matrix<Type> m2( M, N, x );
	cout << "matrix m2 : " << m2 << endl;

	Matrix<Type> m3 = m1;
	cout << "matrix m3 : " << m3 << endl;
	m3.resize( 3, 4 );
	for( int i=1; i<=3; ++i )
		for( int j=1; j<=4; ++j )
			m3(i,j) = Type(i*j);

	int row = m3.dim(1);
	int column = m3.dim(2);
	cout << "the row number of new matrix m3 : " << row << endl;
	cout << "the column number of new matrix m3 : " << column << endl;
	cout << "new matrix m3 : " << m3 << endl;

	cout << "the diagonal matrix of m3 : " << diag( m3 ) << endl;
	cout << "the transpose matrix of m3 : " << trT( m3 ) << endl;

    cout << endl << "\t\t\t\tmatrix-scalar operand" << endl << endl;
	cout << "scalar x = " << x << endl;
	cout << "m1 + x : " << m1+x << endl;
	cout << "x + m1 : " << x+m1 << endl;
	m1 += x;
	cout << "m1 += x : " << m1 << endl;
	cout << "m1 - x : " << m1-x << endl;
	cout << "x - m1 : " << x-m1 << endl;
	m1 -= x;
	cout << "m1 -= x : " << m1 << endl;
	cout << "m1 * x : " << m1*x << endl;
	cout << "x * m1 : " << x*m1 << endl;
	m1 *= x;
	cout << "m1 *= x : " << m1 << endl;
	cout << "m1 / x : " << m1/x << endl;
	cout << "x / m1 : " << x/m1 << endl;
	m1 /= x;
	cout << "m1 /= x : " << m1 << endl;

    cout << endl << "\t\t\telementwise matrix-matrix operand" << endl << endl;
	cout << "m1 + m2 : " << m1 + m2 << endl;
	m1 += m2;
	cout << "m1 += m2 : " << m1 << endl;
	cout << "m1 - m2 : " << m1-m2 << endl;
	m1 -= m2;
	cout << "m1 -= m2 : " << m1 << endl;
	m1 *= m2;
	cout << "m1 *= m2 : " << m1 << endl;
	m1 /= m2;
	cout << "m1 /= m2 : " << m1 << endl;

	cout << "column minimum vector of m1 : " << min(m1) << endl;
	cout << "column maximum vector of m1 : " << max(m1) << endl;
	cout << "column sum vector of m1 : " << sum(m1) << endl;
	cout << "column mean vector of m1 : " << mean(m1) << endl;

    cout << endl << "\t\t\t\tmatrix-vector operand" << endl << endl;
    Vector<Type> v1( 3, 2 );
	cout << "vector v1 : " << v1 << endl;
	cout << "m1 * v1 : " << m1*v1 << endl;
	cout << "m1^T * v1 : " << trMult(m1, v1) << endl;

	cout << endl << "\t\t\t\tmatrix-matrix operand" << endl << endl;
	cout << "m1 * m2 : " << m1*m2 << endl;
	cout << "m3^T * m2 : " << trMult(m3, m2) << endl;
	cout << "m1 * m3^T^T : " << multTr(m1, trT(m3)) << endl;

	Matrix<int> m4( 4, 5 );
	Vector<int> v2(5);
	v2[0] = 1;  v2[1] = 2;  v2[2] = 3;  v2[3] = 4;  v2[4] = 5;
	for( int i=0; i<4; ++i )
		m4.setRow( i*v2, i );

	cout << "matrix m4 : " << m4 << endl;
	cout << "column vectors of m4 : " << endl;
	for( int j=0; j<5; ++j )
		cout << "the " << j << "th column" << m4.getColumn(j) << endl;

    v2.resize(4);
	v2[0] = 1;  v2[1] = 2;  v2[2] = 3;  v2[3] = 4;
	for( int j=0; j<5; ++j )
		m4.setColumn( j*v2, j );

	cout << "row vectors of m4 : " << endl;
	for( int i=0; i<4; ++i )
		cout << "the " << i << "th row" << m4.getRow(i) << endl;

    cout << endl << "\t\t\t\tcomplex matrix operand" << endl << endl;
    complex<Type> c = polar(1.0,PI/4);
    Matrix< complex<Type> > A( M, N ), B(M,N), C( M, N+1 );
    for( int i=0; i<M; i++ )
		for( int j=0; j<N; j++ )
		{
		    A[i][j] = complex<Type>( Type(0.3*i+0.7*j), sin(Type(i+j)) );
		    B[i][j] = complex<Type>( cos(Type(i+j)), Type(0.8*i+0.2*j) );
		}
    for( int i=0; i<N; ++i )
        C.setColumn( A.getColumn(i), i );
    C.setColumn( B.getColumn(0), N );

    cout << setiosflags(ios::fixed) << setprecision(2);
    cout << "Matrix A:  " << A << endl;
    cout << "Matrix B:  " << B << endl;
    cout << "Matrix C:  " << C << endl;
    cout << "Absolute of C : " << abs(C) << endl;
    cout << "Angle of C : " << arg(C) << endl;
    cout << "Real part of C : " << real(C) << endl;
    cout << "Imaginary part of C : " << imag(C) << endl;

    cout << "c*A - A*B + trH(B)  " << c*A - A*B + trH(B) << endl;
    cout << "A*C * C^H*B  " << A*C * trMult(C,B) << endl;
    cout << "(A.*B+C*C^H)) ./ A^T  " << elemDivd( elemMult(A,B)+multTr(C,C), trT(A) ) << endl;
    cout << "diag( A * diag(C) )  " << diag( A*diag(C)/c ) * c << endl;
    cout << "A .* ( B./(c*m1) )  " << elemMultEq( A, elemDivdEq(B,c*complexMatrix(m1)) ) << endl;

	return 0;
}

运行结果:

3       6       9       12

the diagonal matrix of m3 : size: 3 by 1
1
4
9

the transpose matrix of m3 : size: 4 by 3
1       2       3
2       4       6
3       6       9
4       8       12


                                matrix-scalar operand

scalar x = 2
m1 + x : size: 3 by 3
3       3       3
3       3       3
3       3       3

x + m1 : size: 3 by 3
3       3       3
3       3       3
3       3       3

m1 += x : size: 3 by 3
3       3       3
3       3       3
3       3       3

m1 - x : size: 3 by 3
1       1       1
1       1       1
1       1       1

x - m1 : size: 3 by 3
-1      -1      -1
-1      -1      -1
-1      -1      -1

m1 -= x : size: 3 by 3
1       1       1
1       1       1
1       1       1

m1 * x : size: 3 by 3
2       2       2
2       2       2
2       2       2

x * m1 : size: 3 by 3
2       2       2
2       2       2
2       2       2

m1 *= x : size: 3 by 3
2       2       2
2       2       2
2       2       2

m1 / x : size: 3 by 3
1       1       1
1       1       1
1       1       1

x / m1 : size: 3 by 3
1       1       1
1       1       1
1       1       1

m1 /= x : size: 3 by 3
1       1       1
1       1       1
1       1       1


                        elementwise matrix-matrix operand

m1 + m2 : size: 3 by 3
3       3       3
3       3       3
3       3       3

m1 += m2 : size: 3 by 3
3       3       3
3       3       3
3       3       3

m1 - m2 : size: 3 by 3
1       1       1
1       1       1
1       1       1

m1 -= m2 : size: 3 by 3
1       1       1
1       1       1
1       1       1

m1 *= m2 : size: 3 by 3
2       2       2
2       2       2
2       2       2

m1 /= m2 : size: 3 by 3
1       1       1
1       1       1
1       1       1

column minimum vector of m1 : size: 3 by 1
1
1
1

column maximum vector of m1 : size: 3 by 1
1
1
1

column sum vector of m1 : size: 3 by 1
3
3
3

column mean vector of m1 : size: 3 by 1
1
1
1


                                matrix-vector operand

vector v1 : size: 3 by 1
2
2
2

m1 * v1 : size: 3 by 1
6
6
6

m1^T * v1 : size: 3 by 1
6
6
6


                                matrix-matrix operand

m1 * m2 : size: 3 by 3
6       6       6
6       6       6
6       6       6

m3^T * m2 : size: 4 by 3
12      12      12
24      24      24
36      36      36
48      48      48

m1 * m3^T^T : size: 3 by 4
6       12      18      24
6       12      18      24
6       12      18      24

matrix m4 : size: 4 by 5
0       0       0       0       0
1       2       3       4       5
2       4       6       8       10
3       6       9       12      15

column vectors of m4 :
the 0th columnsize: 4 by 1
0
1
2
3

the 1th columnsize: 4 by 1
0
2
4
6

the 2th columnsize: 4 by 1
0
3
6
9

the 3th columnsize: 4 by 1
0
4
8
12

the 4th columnsize: 4 by 1
0
5
10
15

row vectors of m4 :
the 0th rowsize: 5 by 1
0
1
2
3
4

the 1th rowsize: 5 by 1
0
2
4
6
8

the 2th rowsize: 5 by 1
0
3
6
9
12

the 3th rowsize: 5 by 1
0
4
8
12
16


                                complex matrix operand

Matrix A:  size: 3 by 3
(0.00,0.00)     (0.70,0.84)     (1.40,0.91)
(0.30,0.84)     (1.00,0.91)     (1.70,0.14)
(0.60,0.91)     (1.30,0.14)     (2.00,-0.76)

Matrix B:  size: 3 by 3
(1.00,0.00)     (0.54,0.20)     (-0.42,0.40)
(0.54,0.80)     (-0.42,1.00)    (-0.99,1.20)
(-0.42,1.60)    (-0.99,1.80)    (-0.65,2.00)

Matrix C:  size: 3 by 4
(0.00,0.00)     (0.70,0.84)     (1.40,0.91)     (1.00,0.00)
(0.30,0.84)     (1.00,0.91)     (1.70,0.14)     (0.54,0.80)
(0.60,0.91)     (1.30,0.14)     (2.00,-0.76)    (-0.42,1.60)

Absolute of C : size: 3 by 4
0.00    1.09    1.67    1.00
0.89    1.35    1.71    0.97
1.09    1.31    2.14    1.65

Angle of C : size: 3 by 4
0.00    0.88    0.58    0.00
1.23    0.74    0.08    0.98
0.99    0.11    -0.36   1.83

Real part of C : size: 3 by 4
0.00    0.70    1.40    1.00
0.30    1.00    1.70    0.54
0.60    1.30    2.00    -0.42

Imaginary part of C : size: 3 by 4
0.00    0.84    0.91    0.00
0.84    0.91    0.14    0.80
0.91    0.14    -0.76   1.60

c*A - A*B + trH(B)  size: 3 by 3
(3.33,-2.88)    (4.60,-1.68)    (4.37,-2.18)
(0.98,-4.19)    (2.92,-3.71)    (4.05,-3.88)
(-2.20,-4.87)   (0.99,-6.38)    (3.16,-6.90)

A*C * C^H*B  size: 3 by 3
(-22.45,41.39)  (-57.34,30.67)  (-75.11,36.86)
(-13.03,52.79)  (-53.59,46.63)  (-73.18,52.60)
(16.66,60.01)   (-25.93,77.12)  (-40.26,93.59)

(A.*B+C*C^H)) ./ A^T  size: 3 by 3
(inf,nan)       (3.20,-4.47)    (2.78,-0.12)
(2.30,-2.85)    (3.12,-2.22)    (3.99,2.29)
(-0.04,-1.18)   (3.05,0.07)     (3.81,3.69)

diag( A * diag(C) )  size: 3 by 3
(3.42,2.24)     (0.00,0.00)     (0.00,0.00)
(0.00,0.00)     (3.68,0.81)     (0.00,0.00)
(0.00,0.00)     (0.00,0.00)     (4.60,-1.70)

A .* ( B./(c*m1) )  size: 3 by 3
(0.00,0.00)     (0.57,0.27)     (-0.54,0.80)
(0.13,0.85)     (-0.50,1.38)    (0.03,2.65)
(-0.79,1.62)    (0.47,2.65)     (3.32,3.03)


Process returned 0 (0x0)   execution time : 0.281 s
Press any key to continue.

你可能感兴趣的:(C++矩阵类模板(支持实数矩阵与复数矩阵的各种运算))