实数矩阵QR分解算法的C++实现

头文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                    qrd.h
 *
 * Class template of QR decomposition for real matrix.
 *
 * For an m-by-n matrix A, the QR decomposition is an m-by-m orthogonal
 * matrix Q and an m-by-n upper triangular matrix R so that A = Q*R.
 *
 * For economy size, denotes p = min(m,n), then Q is m-by-p, and R is n-by-p,
 * this file provides the economic decomposition format.
 *
 * The QR decompostion always exists, even if the matrix does not have full
 * rank, so the constructor will never fail. The Q and R factors can be
 * retrived via the getQ() and getR() methods. Furthermore, a solve() method
 * is provided to find the least squares solution of Ax=b or AX=B using the
 * QR factors.
 *
 * Zhang Ming, 2010-01 (revised 2010-12), Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef QRD_H
#define QRD_H


#include <matrix.h>


namespace splab
{

	template <typename Real>
	class QRD
	{

	public:

		QRD();
		~QRD();

		void dec( const Matrix<Real> &A );
		bool isFullRank() const;

		Matrix<Real> getQ();
		Matrix<Real> getR();
		Matrix<Real> getH();

		Vector<Real> solve( const Vector<Real> &b );
		Matrix<Real> solve( const Matrix<Real> &B );

    private:

		// internal storage of QR
		Matrix<Real> QR;

		// diagonal of R.
		Vector<Real> RDiag;

	};
	// class QRD


    #include <qrd-impl.h>

}
// namespace splab


#endif
// QRD_H

实现文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                               qrd-impl.h
 *
 * Implementation for QRD class.
 *
 * Zhang Ming, 2010-01 (revised 2010-12), Xi'an Jiaotong University.
 *****************************************************************************/


/**
 * constructor and destructor
 */
template<typename Real>
QRD<Real>::QRD()
{
}

template<typename Real>
QRD<Real>::~QRD()
{
}


/**
 * Create a QR factorization object for A.
 */
template <typename Real>
void QRD<Real>::dec( const Matrix<Real> &A )
{

    int m = A.rows(),
        n = A.cols(),
        p = min(m,n);
    QR = A;
    RDiag = Vector<Real>(p);

    // main loop.
    for( int k=0; k<p; ++k )
    {
        // Compute 2-norm of k-th column without under/overflow.
        Real nrm = 0;
        for( int i=k; i<m; ++i )
            nrm = hypot( nrm, QR[i][k] );
//        for( int i=k; i<m; ++i )
//            nrm += QR[i][k]*QR[i][k];
//        nrm = sqrt(nrm);

        if( nrm != 0 )
        {
            // Form k-th Householder vector.
            if( QR[k][k] < 0 )
                nrm = -nrm;

            for( int i=k; i<m; ++i )
                QR[i][k] /= nrm;

            QR[k][k] += 1;

            // Apply transformation to remaining columns.
            for( int j=k+1; j<n; ++j )
            {
                Real s = 0;
                for( int i=k; i<m; ++i )
                    s += QR[i][k]*QR[i][j];

                s = -s/QR[k][k];
                for( int i=k; i<m; ++i )
                    QR[i][j] += s*QR[i][k];
            }
        }

        RDiag[k] = -nrm;
    }
}


/**
 * Flag to denote the matrix is of full rank.
 */
template <typename Real>
inline bool QRD<Real>::isFullRank() const
{
    for( int j=0; j<RDiag.dim(); ++j )
        if( RDiag[j] == 0 )
            return false;

    return true;
}


/**
 * Return the upper triangular factorof the QR factorization.
 */
template <typename Real>
Matrix<Real> QRD<Real>::getQ()
{
    int m = QR.rows(),
        p = RDiag.dim();
    Matrix<Real> Q( m, p );

    for( int k=p-1; k>=0; --k )
    {
        for( int i=0; i<m; ++i )
            Q[i][k] = 0;

        Q[k][k] = 1;
        for( int j=k; j<p; ++j )
            if( QR[k][k] != 0 )
            {
                Real s = 0;
                for( int i=k; i<m; ++i )
                    s += QR[i][k] * Q[i][j];

                s = -s / QR[k][k];
                for( int i=k; i<m; ++i )
                    Q[i][j] += s*QR[i][k];
            }
    }

    return Q;
}


/**
 * Return the orthogonal factorof the QR factorization.
 */
template <typename Real>
Matrix<Real> QRD<Real>::getR()
{
    int n = QR.cols(),
        p = RDiag.dim();
    Matrix<Real> R( p, n );

    for( int i=0; i<p; ++i )
        for( int j=0; j<n; ++j )
            if( i < j )
                R[i][j] = QR[i][j];
            else if( i == j )
                R[i][j] = RDiag[i];

    return R;
}


/**
 * Retreive the Householder vectors from QR factorization
 */
template <typename Real>
Matrix<Real> QRD<Real>::getH()
{
    int m = QR.rows(),
        p = RDiag.dim();
    Matrix<Real> H( m, p );

    for( int i=0; i<m; ++i )
        for( int j=0; j<=i&&j<p; ++j )
            H[i][j] = QR[i][j];

    return H;
}


/**
 * Least squares solution of A*x = b
 * Return x: a vector that minimizes the two norm of Q*R*X-B.
 * If B is non-conformant, or if QR.isFullRank() is false,
 * the routinereturns a null (0-length) vector.
 */
template <typename Real>
Vector<Real> QRD<Real>::solve( const Vector<Real> &b )
{
    int m = QR.rows(),
        n = QR.cols();

    assert( b.dim() == m );

    // matrix is rank deficient
    if( !isFullRank() )
        return Vector<Real>();

    Vector<Real> x = b;

    // compute y = transpose(Q)*b
    for( int k=0; k<n; ++k )
    {
        Real s = 0;
        for( int i=k; i<m; ++i )
            s += QR[i][k]*x[i];

        s = -s/QR[k][k];
        for( int i=k; i<m; ++i )
            x[i] += s*QR[i][k];
    }

    // solve R*x = y;
    for( int k=n-1; k>=0; --k )
    {
        x[k] /= RDiag[k];
        for( int i=0; i<k; ++i )
            x[i] -= x[k]*QR[i][k];
    }

    // return n portion of x
    Vector<Real> x_(n);
    for( int i=0; i<n; ++i )
        x_[i] = x[i];

    return x_;
}


/**
 * Least squares solution of A*X = B
 * return X: a matrix that minimizes the two norm of Q*R*X-B.
 * If B is non-conformant, or if QR.isFullRank() is false, the
 * routinereturns a null (0) matrix.
 */
template <typename Real>
Matrix<Real> QRD<Real>::solve( const Matrix<Real> &B )
{
    int m = QR.rows();
    int n = QR.cols();

    assert( B.rows() == m );

    // matrix is rank deficient
    if( !isFullRank() )
        return Matrix<Real>(0,0);

    int nx = B.cols();
    Matrix<Real> X = B;

    // compute Y = transpose(Q)*B
    for( int k=0; k<n; ++k )
        for( int j=0; j<nx; ++j )
        {
            Real s = 0;
            for( int i=k; i<m; ++i )
                s += QR[i][k]*X[i][j];

            s = -s/QR[k][k];
            for( int i=k; i<m; ++i )
                X[i][j] += s*QR[i][k];
        }

    // solve R*X = Y;
    for( int k=n-1; k>=0; --k )
    {
        for( int j=0; j<nx; ++j )
            X[k][j] /= RDiag[k];

        for( int i=0; i<k; ++i )
            for( int j=0; j<nx; ++j )
                X[i][j] -= X[k][j]*QR[i][k];
    }

    // return n x nx portion of X
    Matrix<Real> X_( n, nx );
    for( int i=0; i<n; ++i )
        for( int j=0; j<nx; ++j )
            X_[i][j] = X[i][j];

     return X_;
}

测试代码:

/*****************************************************************************
 *                               qrd_test.cpp
 *
 * QRD class testing.
 *
 * Zhang Ming, 2010-01 (revised 2010-12), Xi'an Jiaotong University.
 *****************************************************************************/


#define BOUNDS_CHECK

#include <iostream>
#include <iomanip>
#include <qrd.h>


using namespace std;
using namespace splab;


typedef double  Type;
const   int     M = 4;
const   int     N = 3;


int main()
{
	Matrix<Type> A(M,N), Q, R;
	A[0][0] = 1;	A[0][1] = 0;	A[0][2] = 0;
	A[1][0] = 1;	A[1][1] = 2;	A[1][2] = 4;
	A[2][0] = 1;	A[2][1] = 3;	A[2][2] = 9;
	A[3][0] = 1;	A[3][1] = 3;	A[3][2] = 9;

	Matrix<Type> B = trT(A);
	QRD<Type> qr;
	qr.dec(B);
	Q = qr.getQ();
	R = qr.getR();

    cout << setiosflags(ios::fixed) << setprecision(4);
	cout << "The original matrix B : " << B << endl;
	cout << "The orthogonal matrix Q  : " << Q << endl;
	cout << "The upper triangular matrix R : " << R << endl;
	cout << "B - Q*R : " << B - Q*R << endl;

    Vector<Type> b(M);
	b[0]= 1;	b[1] = 0;	b[2] = 1, b[3] = 2;

	qr.dec(A);
	if( qr.isFullRank() )
	{
	    Vector<Type> x = qr.solve(b);
        cout << "The constant vector b : " << b << endl;
        cout << "The least squares solution of A * x = b : " << x << endl;

        Matrix<Type> X = qr.solve(eye(M,Type(1)));
        cout << "The least squares solution of A * X = I : " << X << endl;
        cout << "The A * X: " << A*X << endl;
	}
	else
        cout << " The matrix is rank deficient! " << endl;

	return 0;
}

运行结果:

The original matrix B : size: 3 by 4
1.0000  1.0000  1.0000  1.0000
0.0000  2.0000  3.0000  3.0000
0.0000  4.0000  9.0000  9.0000

The orthogonal matrix Q  : size: 3 by 3
-1.0000 0.0000  0.0000
0.0000  -0.4472 0.8944
0.0000  -0.8944 -0.4472

The upper triangular matrix R : size: 3 by 4
-1.0000 -1.0000 -1.0000 -1.0000
0.0000  -4.4721 -9.3915 -9.3915
0.0000  0.0000  -1.3416 -1.3416

B - Q*R : size: 3 by 4
0.0000  0.0000  0.0000  0.0000
0.0000  0.0000  0.0000  0.0000
0.0000  0.0000  0.0000  0.0000

The constant vector b : size: 4 by 1
1.0000
0.0000
1.0000
2.0000

The least squares solution of A * x = b : size: 3 by 1
1.0000
-1.8333
0.6667

The least squares solution of A * X = I : size: 3 by 4
1.0000  -0.0000 0.0000  -0.0000
-0.8333 1.5000  -0.3333 -0.3333
0.1667  -0.5000 0.1667  0.1667

The A * X: size: 4 by 4
1.0000  0.0000  0.0000  0.0000
0.0000  1.0000  -0.0000 0.0000
-0.0000 0.0000  0.5000  0.5000
-0.0000 0.0000  0.5000  0.5000


Process returned 0 (0x0)   execution time : 0.099 s
Press any key to continue.

你可能感兴趣的:(实数矩阵QR分解算法的C++实现)