本文通过一个简单的例子,介绍网络服务器编程模型
服务器接受客户端连接请求,回显客户端发过来的数据,发送当前时间给客户端
所有源码可打包下载:
http://download.csdn.net/detail/yfkiss/4318990
客户端请求相关代码:
//和服务器建立连接 if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1) { perror("connect"); exit(1); } //向服务器发送请求 if(send(sockfd,buf,strlen(buf),0)==-1) { perror("send"); exit(1); } memset(buf,0,sizeof(buf)); //接受从服务器返回的信息 if((numbytes = recv(sockfd,buf,100,0))==-1) { perror("recv"); exit(1); } else { printf("Time: %s\n", buf); }
//等待连接 while(1) { struct sockaddr cliaddr; sin_size = sizeof(struct sockaddr); //接受连接 if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1) { perror("accept"); return -1; } char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV]; getnameinfo(&cliaddr, sizeof(cliaddr), hbuf, sizeof hbuf, sbuf, sizeof sbuf, NI_NUMERICHOST | NI_NUMERICSERV); printf("Accepted connection: host=%s, port=%s\n", hbuf, sbuf); //读取客户端发来的信息 memset(buff,0,sizeof(buff)); if((numbytes = recv(new_fd,buff,sizeof(buff),0))==-1) { perror("recv"); return -1; } //获取系统时间 time_t now = time(0); sprintf(buff, "Server Time is : %s", ctime(&now)); //将从客户端接收到的信息再发回客户端 if(send(new_fd,buff,strlen(buff),0)==-1) { perror("send"); } //关闭连接 close(new_fd); }
//等待连接 while(1) { struct sockaddr cliaddr; sin_size = sizeof(struct sockaddr); //接受连接 if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1) { perror("accept"); return -1; } char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV]; getnameinfo(&cliaddr, sizeof(cliaddr), hbuf, sizeof hbuf, sbuf, sizeof sbuf, NI_NUMERICHOST | NI_NUMERICSERV); printf("Accepted connection: host=%s, port=%s\n", hbuf, sbuf); //fork子进程处理请求 if(!fork()) { process(new_fd); //关闭连接 close(new_fd); return 0; } } close(sockfd); }
void* process(void* arg) { int new_fd = *(int*)arg; char buff[1024]; int numbytes; //读取客户端发来的信息 memset(buff,0,sizeof(buff)); if((numbytes = recv(new_fd,buff,sizeof(buff),0))==-1) { perror("recv"); return NULL; } //获取系统时间 time_t now = time(0); sprintf(buff, "Server Time is : %s", ctime(&now)); //将从客户端接收到的信息再发回客户端 if(send(new_fd,buff,strlen(buff),0)==-1) { perror("send"); return NULL; } close(new_fd); pthread_exit(NULL); return NULL; } int main() { ...... //等待连接 while(1) { struct sockaddr cliaddr; sin_size = sizeof(struct sockaddr); //接受连接 if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1) { perror("accept"); return -1; } char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV]; getnameinfo(&cliaddr, sizeof(cliaddr), hbuf, sizeof hbuf, sbuf, sizeof sbuf, NI_NUMERICHOST | NI_NUMERICSERV); printf("Accepted connection: host=%s, port=%s\n", hbuf, sbuf); //创建新线程为客户端服务 if((pthread_create(&thread, NULL, process, (void*)(&new_fd)))) { perror("pthread_create error"); return 0; } } close(sockfd); }
多线程模型通过将连接与线程绑定的方式,较好的解决了同一时刻为多个客户提供请求的要求,但是,如果客户请求数成千上万,即使是线程,服务器也无法承受庞大的资源消耗。当然,我们可以通过使用线程池来控制线程数量,减少资源开销,但是,面对大的服务压力,池本身无法增加承载能力。
事件驱动模型使用IO复用(参考网络编程--IO模型示例),在每一个执行周期都会探测一次或一组事件,一个特定的事件会触发某个特定的响应。
相比其他模型,事件驱动模型优点是只用单线程执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。缺点是程序逻辑复杂,编程复杂性较高。
如图:
核心代码:
#define MAX_EVENTS 1024 struct myevent_s { int fd; void (*call_back)(int fd, int events, void *arg); int events; void *arg; int status; // 1: in epoll wait list, 0 not in char buff[128]; // recv data buffer int len; long last_active; // last active time }; int g_epollFd; myevent_s g_Events[MAX_EVENTS+1]; // g_Events[MAX_EVENTS] is used by listen fd void RecvData(int fd, int events, void *arg); void SendData(int fd, int events, void *arg); // set event void EventSet(myevent_s *ev, int fd, void (*call_back)(int, int, void*), void *arg) { ev->fd = fd; ev->call_back = call_back; ev->events = 0; ev->arg = arg; ev->status = 0; ev->len = 0; ev->last_active = time(NULL); } // add/mod an event to epoll void EventAdd(int epollFd, int events, myevent_s *ev) { struct epoll_event epv = {0, {0}}; int op; epv.data.ptr = ev; epv.events = ev->events = events; if(ev->status == 1){ op = EPOLL_CTL_MOD; } else{ op = EPOLL_CTL_ADD; ev->status = 1; } if(epoll_ctl(epollFd, op, ev->fd, &epv) < 0) printf("Event Add failed[fd=%d]\n", ev->fd); else printf("Event Add OK[fd=%d]\n", ev->fd); } // delete an event from epoll void EventDel(int epollFd, myevent_s *ev) { struct epoll_event epv = {0, {0}}; if(ev->status != 1) return; epv.data.ptr = ev; ev->status = 0; epoll_ctl(epollFd, EPOLL_CTL_DEL, ev->fd, &epv); } // accept new connections from clients void AcceptConn(int fd, int events, void *arg) { struct sockaddr_in sin; socklen_t len = sizeof(struct sockaddr_in); int nfd, i; // accept if((nfd = accept(fd, (struct sockaddr*)&sin, &len)) == -1) { if(errno != EAGAIN && errno != EINTR) { printf("%s: bad accept", __func__); } return; } do { for(i = 0; i < MAX_EVENTS; i++) { if(g_Events[i].status == 0) { break; } } if(i == MAX_EVENTS) { printf("%s:max connection limit[%d].", __func__, MAX_EVENTS); break; } // set nonblocking if(fcntl(nfd, F_SETFL, O_NONBLOCK) < 0) break; // add a read event for receive data EventSet(&g_Events[i], nfd, RecvData, &g_Events[i]); EventAdd(g_epollFd, EPOLLIN|EPOLLET, &g_Events[i]); printf("new conn[%s:%d][time:%d]\n", inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), g_Events[i].last_active); }while(0); } // receive data void RecvData(int fd, int events, void *arg) { struct myevent_s *ev = (struct myevent_s*)arg; int len; // receive data len = recv(fd, ev->buff, sizeof(ev->buff)-1, 0); EventDel(g_epollFd, ev); if(len > 0) { ev->len = len; ev->buff[len] = '\0'; printf("C[%d]:%s\n", fd, ev->buff); // change to send event EventSet(ev, fd, SendData, ev); EventAdd(g_epollFd, EPOLLOUT|EPOLLET, ev); } else if(len == 0) { close(ev->fd); printf("[fd=%d] closed gracefully.\n", fd); } else { close(ev->fd); printf("recv[fd=%d] error[%d]:%s\n", fd, errno, strerror(errno)); } } // send data void SendData(int fd, int events, void *arg) { struct myevent_s *ev = (struct myevent_s*)arg; int len; time_t now = time(0); sprintf(ev->buff, "Server Time is : %s", ctime(&now)); // send data len = send(fd, ev->buff, strlen(ev->buff), 0); ev->len = 0; EventDel(g_epollFd, ev); if(len > 0) { // change to receive event EventSet(ev, fd, RecvData, ev); EventAdd(g_epollFd, EPOLLIN|EPOLLET, ev); } else { close(ev->fd); printf("recv[fd=%d] error[%d]\n", fd, errno); } } void InitListenSocket(int epollFd, short port) { int listenFd = socket(AF_INET, SOCK_STREAM, 0); fcntl(listenFd, F_SETFL, O_NONBLOCK); // set non-blocking printf("server listen fd=%d\n", listenFd); EventSet(&g_Events[MAX_EVENTS], listenFd, AcceptConn, &g_Events[MAX_EVENTS]); // add listen socket EventAdd(epollFd, EPOLLIN|EPOLLET, &g_Events[MAX_EVENTS]); // bind & listen sockaddr_in sin; bzero(&sin, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_addr.s_addr = INADDR_ANY; sin.sin_port = htons(port); bind(listenFd, (const sockaddr*)&sin, sizeof(sin)); listen(listenFd, 5); } int main(int argc, char **argv) { short port = 7092; // default port // create epoll g_epollFd = epoll_create(MAX_EVENTS); if(g_epollFd <= 0) printf("create epoll failed.%d\n", g_epollFd); // create & bind listen socket, and add to epoll, set non-blocking InitListenSocket(g_epollFd, port); // event loop struct epoll_event events[MAX_EVENTS]; printf("server running:port[%d]\n", port); int checkPos = 0; while(1){ // a simple timeout check here, every time 100, better to use a mini-heap, and add timer event long now = time(NULL); for(int i = 0; i < 100; i++, checkPos++) // doesn't check listen fd { if(checkPos == MAX_EVENTS) checkPos = 0; // recycle if(g_Events[checkPos].status != 1) continue; long duration = now - g_Events[checkPos].last_active; if(duration >= 60) // 60s timeout { close(g_Events[checkPos].fd); printf("[fd=%d] timeout[%d--%d].\n", g_Events[checkPos].fd, g_Events[checkPos].last_active, now); EventDel(g_epollFd, &g_Events[checkPos]); } } // wait for events to happen int fds = epoll_wait(g_epollFd, events, MAX_EVENTS, 1000); if(fds < 0){ printf("epoll_wait error, exit\n"); break; } for(int i = 0; i < fds; i++){ myevent_s *ev = (struct myevent_s*)events[i].data.ptr; if((events[i].events&EPOLLIN)&&(ev->events&EPOLLIN)) // read event { ev->call_back(ev->fd, events[i].events, ev->arg); } if((events[i].events&EPOLLOUT)&&(ev->events&EPOLLOUT)) // write event { ev->call_back(ev->fd, events[i].events, ev->arg); } } } // free resource return 0; }
多进程和多线程适用于小规模,长连接的场景
事件驱动适用于大规模、IO密集、大量慢连接、短连接的场景