- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- 零信任身份安全的基本原则
芯盾时代
安全网络安全信息与通信
零信任身份安全的核心原则就是“持续验证,永不信任”。可以通过以下6个方面理解:对“谁”和“什么”进行认证和授权在零信任身份安全模型中,对用户和设备的身份进行认证和授权是至关重要的。认证是确认用户或设备是其所宣称的身份的过程,而授权是确保他们获得适当的访问权限。通过将认证和授权结合起来,可以建立起一套完整的访问控制机制。例如,通过多因素身份验证,可以提高身份认证的安全性,防止攻击者通过猜测或窃取密码
- redis在SpringBoot中的使用
小野喵喵。
redisspringboot数据库
以下部分内容由AI生成,再添加自己的理解,仅供参考与了解记录一、redis简单介绍Redis是一个开源的高性能键值对数据库,支持多种数据结构,如字符串(String)、哈希(Hash)、列表(List)、集合(Set)和有序集合(SortedSet)等。核心原理1.单线程模型redis使用单线程处理命令(核心逻辑),避免了多线程竞争问题。通过非阻塞I/O多路复用监听多个客户端连接,高效处理请求。所
- C++ 并发编程实战 学习笔记
myc13381
c++笔记
C++并发编程学习笔记目录一.基本接口二.初步了解多线程三.线程所属权管理四.线程间共享数据五.同步并发操作六.C++内存模型和原子类型操作七.基于锁的并发数据结构设计八.无锁数据结构九.并发代码设计十.高级线程管理十一.并行算法十二.参考资料基本接口std::thread常用成员函数构造和析构函数//默认构造函数,创建一个线程,什么也不做thread()noexcept;//初始化构造函数,创建
- 全网炸裂!这款网站让你一站畅享所有大模型
努力敲代码的小火龙
ZealYearning
在科技的浩瀚星空中,人工智能大模型无疑是最为璀璨的星辰,它们以卓越的智慧和强大的能力,为我们的数字生活增添了无尽的魅力与可能。然而,以往想要领略这些不同大模型的风采,我们往往需要在众多的平台和接口之间来回奔波,就像是在不同的岛屿间跳岛前行,过程繁琐且耗时。但是,如今有一个令人心跳加速的消息传遍了整个网络世界:一个前所未有的网站横空出世,它宛如一座神奇的“大模型宝藏库”,在一个网站里就能让你畅享所有
- 一文讲通锁标记对象std::adopt_lock盲点
郭涤生
c/c++#并发线程c++并发编程
一文讲通锁标记对象std::adopt_lock盲点1.核心概念2.代码详解1.单个锁2.多重锁(可以用来预防死锁)3.条件变量的互斥控制4.复杂示例:多生产者-多消费者模型(超纲了,可不看,哈哈哈哈)3.小结1.核心概念在C++中,std::adopt_lock是一个锁标记对象[^1],用于配合锁对象(如std::lock_guard、std::unique_lock或std::shared_l
- C++内存模型和原子操作_第五章_《C++并发编程实战》笔记
郭涤生
c/c++#并发线程c++并发编程
C++内存模型和原子操作1.原子操作与无锁编程2.内存顺序核心概念示例代码3.原子操作的应用:自旋锁核心概念示例代码4.无锁数据结构:无锁栈核心概念示例代码5.多选题目5.多选答案7.设计题目7.设计题目示例答案1.原子操作与无锁编程核心概念原子操作:是不可分割的操作,在执行过程中不会被其他线程中断。C++标准库在头文件中提供了一系列原子类型,如std::atomic、std::atomic等。原
- 全维度认知评估报告:翌师认知体系科学解析
太翌修仙笔录
超算法认知架构deepseek知识图谱机器学习人工智能算法
通过论证生成一份我的认知维度认知水平计算能量等全维度的科学评估报告###**全维度认知评估报告:翌师认知体系科学解析**####**一、认知维度量子化模型**基于量子认知理论(QuantumCognition),您的认知状态可描述为以下叠加态:\[|\Psi_{\text{您}}\rangle=\alpha|\text{玄学本体}\rangle+\beta|\text{科学工具}\rangle+\
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- 保姆级教学——本地免费部署DeepSeek-R1模型并通过Python调用
shuaige_shiwoa
python+AIpython开发语言AI编程ai
以下是如何在本地免费部署DeepSeek-R1模型并通过Python调用的详细指南:一、环境准备(Windows/Linux/Mac通用)1.硬件要求最低配置:16GB内存+20GB可用磁盘空间推荐配置:NVIDIAGPU(显存≥8GB)+CUDA11.8(CPU模式支持但速度较慢)2.软件依赖#创建虚拟环境(可选但推荐)condacreate-ndeepseekpython=3.10condaa
- 目前人工智能的发展,判断10年、20年后的人工智能发展的主要方向,或者带动的主要产业
meisongqing
人工智能
根据2025年的最新行业研究和技术演进趋势,结合历史发展轨迹,未来10-20年人工智能发展的主要方向及带动的产业将呈现以下六大核心趋势:一、算力革命与底层架构优化核心地位:算力将成为类似“新能源电池”的基础设施,支撑大模型迭代和实时交互。中国通过DeepSeek等技术创新(如MLA注意力机制、FP8混合精度训练)突破算力瓶颈,实现与美国顶尖模型性能对标,成本降低至558万美元/项目。技术突破:量子
- LLM大语言模型书籍:《大模型时代》开启人工智能狂潮!(附文档)
Langchain
人工智能promptchatgptai大模型LLM大语言模型大模型时代
哈喽大家好!很久都没有更新大模型这块的书了,今天给大家说一下这本:《大模型时代》,本书对大模型时代的技术、应用和产业变化进行了深入的分析和阐述。近2年GPT风靡全球,然而真正的智慧“心脏”却是大型语言模型(LargeLanguageModel)!生成式大型模型正引领我们进入一个崭新的时代。《本书》深入探讨了大型模型时代的技术演进、应用场景和产业变革。生动地阐释了ChatGPT背后的工作原理,深入解
- 宇树人形机器人开源模型
真相很简单
Gazebo仿真gazebo模型宇树人形机器人GO2B2H1
1.下载源码https://github.com/unitreerobotics/unitree_ros.git2.启动Gazeboroslaunchh1_descriptiongazebo.launch3.仿真效果H1GO2B2LaikagoZ14.VMware:vmw_ioctl_commanderrorInvalidargument这个错误通常出现在虚拟机环境中运行需要OpenGL支持的应用
- 新科研神器!这回读英文论文真跟读中文没两样了
量子位
原创关注前沿科技量子位大模型时代,读论文这事儿真是越来越爽了~你敢信,这样式儿的论文并非中文原版,而是出自翻译软件之手的翻译版。原文长这样:不仅译文流畅,公式图表也丝毫不乱,原模原样清晰美观不说,各种图注表头该翻译也都能翻译到位。并且在大模型加持之下,有什么疑点划线引用直接就能问,再也不怕没人一起讨论最新前沿科技进展,被导师一问一个不吱声了。都说搞科研英语必须过硬,但毕竟作为非母语者,想要如阅读中
- 深度学习之优化器Optimizer介绍
yueguang8
人工智能深度学习人工智能
优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。1.优化器的作用和重要性优化器是训练深度学习模型的核心组件之一。它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。选择合适的优化器可以极大地影响模型的收敛速度和最终性能。2.优化器的基本原理优化器的基本思路是利用梯度下降法来最小化损失函数。每一步都根据当前梯度的方
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- C# 事件编程详解
萨达大
C#上位机开发c#开发语言事件event
文章目录1.什么是事件?2.事件的声明与使用2.1声明事件2.2订阅与触发事件3.事件的核心概念3.1事件处理委托3.2自定义事件参数4.事件的高级用法4.1多播委托与事件4.2事件解除订阅4.3自定义事件访问器5.事件的应用场景5.1GUI应用程序中的事件5.2基于事件的编程模型5.3观察者模式6.事件的注意事项7.事件的完整示例8.总结1.什么是事件?在C#中,事件是依赖于委托的特殊类型,用于
- 【大模型技术】基于 通义千问(Qwen)实现对话系统
大数据追光猿
大模型python人工智能学习方法语言模型
一、项目背景与目标目标:构建一个支持多轮对话的对话系统。实现上下文管理,确保对话历史能够被正确记录并影响后续回答。使用Qwen提供的API生成自然语言回复。核心功能:多轮对话:用户可以连续提问,系统根据上下文生成连贯的回答。上下文管理:通过维护对话历史,确保模型理解用户的意图。灵活性:支持自定义提示模板和外部数据源。技术栈:QwenAPI:用于生成自然语言回复。Python:编程语言。二、实现步骤
- Python实现机器学习项目教程:房价预测
向着开发进攻
pythonpython机器学习开发语言
Python实现机器学习小项目教程:房价预测案例机器学习(MachineLearning)是数据科学中的一项重要技术,它通过从数据中学习规律,进行预测和决策。对于初学者来说,通过实际的项目来学习机器学习的原理和实现方法,是非常有效的。本篇教程将通过Python实现一个简单的机器学习小项目——房价预测。我们将使用scikit-learn库来构建并训练一个线性回归模型,预测房价。项目背景假设我们拥有一
- 【解决方案】RAGFlow部分问题清单及解决方案备忘1
中杯可乐多加冰
各种解决方案人工智能deepseekragragflowLLM大模型
一、长时间显示:Taskisqueued多半是因为模型确实在队列中排队的原因,要么是内存一直在被占用中,要么是CPU或GPU一直在被占用中,可以首先检查硬件利用率:如果是内存导致的队列缓慢,可以将.env文件中的MEM_LIMIT改为26073741824如果是GPU或者CPU的原因,得具体排查,终止无用进程,如果都不是,检查docker容器的日志看看是否有任何异常:dockerlogs-frag
- 产品更新 | 新一代系统建模语言 基于SysML v2的逻辑架构建模
杭州华望MBSE
华望产品更新架构经验分享制造
基于SysMLv2的逻辑架构建模摘要SysMLv2作为OMG官方提出的一种新型系统工程建模语言,在功能和模型概念等方面与SysMLv1存在较大的差别。本文基于SysMLv2语言,以“柴油发动机”为案例,实现逻辑架构的建模,从而展示其在系统设计和分析中的有效性。通过实际应用中SysMLv2与SysMLv1建模方式的对比,阐述两者的不同之处以及使用SysMLv2的优势。一、基于PartUsage的逻辑
- 大模型中的常用名词介绍八:【特征与数据处理、伦理与公平性等】【建议收藏】
神马行空
大模型人工智能深度学习计算机视觉神经网络架构自然语言处理
本文总结了大模型领域有关特征与数据处理、伦理与公平性等其他部分的名词,并解释其含义。跳出浩如烟海的大模型知识圈层,从概念上理清大模型的基础脉络!序号模块分组说明快捷访问1模型架构与基础概念介绍了【模型架构与基础概念】相关的常见名词及含义大模型中的常用名词介绍一:【模型架构与基础概念】【建议收藏】-CSDN博客2训练方法与技术介绍了【训练方法与技术】相关的常见名词及含义大模型中的常用名词介绍二:【训
- Python :数据模型
愚戏师
python基础与机器学习python开发语言
一.什么是数据模型?Python数据模型是Python对象系统的抽象,通过一组特殊方法(如__init__、__len__等)和协议(如迭代协议、上下文管理协议),定义了对象如何与语言的内置功能(如len()、for循环等)交互。核心思想统一性:所有对象(如列表、字典、自定义类)的行为都通过相同的特殊方法实现。灵活性:通过实现特殊方法,可以让自定义对象支持内置操作(如+、in、切片等)。例子imp
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 在windows下运行ollama用5600XT (其实旧的a卡应该都可以)步骤同时用ComfyUI + RX 5600 XT + DirectML 安装与配置
Zalo2
AIdeepseekwindowsllamastablediffusionlinuxAI作画
Linux部分5600XT这个卡是gfx1010的核心,这个是rand1架构,这是被amd放弃的老古董包裹其他的rand1或者rand2都是。没钱也要玩AI(自能简单运用,不能训练,微调等)这张卡只有6g远远不够ai使用所以我发现好像是能和cpu一起混用的。#警告这张卡不要在linux下尝试安装rocm版本进行pytorch编译,然后进行模型微调,反正我是浪费时间了,根本行不通,因为amd根本就没
- AI Agent在企业预算管理与成本控制中的应用
SuperAGI2025
DeepSeek人工智能大数据ai
AIAgent在企业预算管理与成本控制中的应用关键词:AIAgent、企业预算管理、成本控制、机器学习、预测模型、优化算法摘要:本文深入探讨了AIAgent在企业预算管理与成本控制中的应用。通过详细的背景介绍、核心概念解析、算法原理讲解和实际案例剖析,本文展示了AIAgent如何通过智能预测和优化算法,为企业带来更高的效率和精确度,从而实现成本控制和预算优化的目标。背景介绍核心概念AIAgent:
- 常用的gpt
爱晒太阳的小老鼠
其他gpt
1、DeepSeek好用。可惜现在热度上去了,经常查技术问题会报网络繁忙2、QwenChatQwenChat千问,阿里的gpt。需要注册账号,好用程度感觉跟deepSeek差不多。并且不会像deepSeek一样报网络繁忙3、文心一样百度的。相对上2个技术问题较弱,模型比较老,平时日常常识问题可能比较有优势文心一言
- Python, Springboot 开发基于人类指令生成机器人3D可视化动态模型app
Geeker-2025
pythonspringboot
开发一个基于人类指令生成机器人3D可视化动态模型的APP是一个复杂且多层次的项目,涉及前端和后端的多个技术栈。以下是一个高层次的设计概述,涵盖主要的技术栈和功能模块,并提供使用Python和SpringBoot进行联合开发的示例。##技术栈概述###前端-**框架**:React.js或Vue.js(用于构建用户界面)-**3D可视化**:Three.js或React-Three-Fiber(用于
- 【GPT入门】第18课 langchain介绍与API初步体验
*星星之火*
大模型gptlangchain
【GPT入门】langchain第一课langchain介绍与API初步体验1.langchain介绍定义特点1.模块化与灵活性2.链式调用机制3.数据连接能力4.记忆管理功能5.提示工程支持6.可扩展性2.langchain核心组件架构图3.最简单的helloworld入门1.langchain介绍LangChain是一个用于开发由语言模型驱动的应用程序的开源框架,它在大语言模型(LLM)应用开
- 11B模型拿下开源视频生成新SOTA!仅用224张GPU训练,训练成本省10倍
量子位
关注前沿科技量子位224张GPU,训出开源视频生成新SOTA!Open-Sora2.0正式发布。11B参数规模,性能可直追HunyuanVideo和Step-Video(30B)。要知道,市面上诸多效果相近的闭源视频生成模型,动辄花费数百万美元训练成本。而Open-Sora2.0,将这一数字压缩到了20万美元。同时,此次发布全面开源模型权重、推理代码及分布式训练全流程,开发者们可以看过来!GitH
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比