硬件“行话”

做嵌入式系统开发,不可避免的要接触硬件,有时如果可能还得拿起示波器和逻辑分析仪进行调试。个人觉得,做嵌入式开发最好是对数字电路有一定的了解。对于数字电路的系统性知识,读者可以找相关的书籍进行学习,我也相信很多专业都学过数字电路这一课程。下面我们来看一看在嵌入式系统开发中需要掌握的最基本的一些硬件知识或术语,这此术语也是嵌入式开发人员之间的“行话”(当然,也是硬件工程师的“行话”)。

(1)电平
在数字电路中,分为高电平和低电平,分别用1和0表示。一个数字电路的管脚,总是存在一个电平的,要么高要么低,或者说要么1要到0(其实,还有另一种状态,后面会谈到)。

(2)总线(Bus)
在嵌入式系统中一定会有一块处理器芯片,此外,还有其它的芯片作为外部设备(后面简称外设),这些芯片与处理器协作实现产品的功能。比如,可能存在实现图像采集的芯片,也可能存在采集声音的芯片,等等。复杂的产品往往是由大量的芯片组成的。那么不可避免的是我们需要将所有的外设与处理器进行相连,最为简单的是将所有的外设都采用独立(注意是独立)的信号线连接至处理器,这样的好处是容易理解,但问题是:不可行。因为处理器芯片需要引出太多的线了,从芯片的生产和产品的生产角度来看都不实际。加之,处理器(在此我们假设处理器是单核的,而不是多核的)处理事务在微观上是串行的,也就是说在某一时刻如果要对外设进行读写操作,那只可能是对大量外设中的一个进行,即多个外设不可能在微观上被处理器同时访问。需要注意的是,这里提出了微观这一概念,这是为了区别于宏观。从宏观上来讲,一个处理器中可以有多个任务同时运行,但这些任务在微观上却是一个一个运行的(后面会用串行来描述这里所说的“一个一个”),多任务的串行运行实现是由操作系统扮演着重要的角色来实现的。回到我们的话题,即然将每个外设采用独立的信号线连到处理器不可行,且处理器在单一时间内只会对一个外设进行访问,那我们能不能采用共享的信号线将所有的芯片连在一起呢?这就是总线概念的由来。通俗的说,如果我们周围有十个家庭,为了让这十个家庭每两个之间都能往来,我们并不需要为每两个家庭修一条单独(注意是单独)的路(如果这样,要修45条路),而是可以修一条大路,然后,每个家都与大路相连。

对于总线,我们往往说总线是处理器的,而其它的外设是挂在总线上的。那有一个问题,我们每一时间只能访问挂在总线上的一个外设,那如何区分这些外设呢?和我们的路一样,我们需要用地址来区分每一个家庭,在总线上,也是采用地址来进行区分的。这样,总线就根据其功能分为两类了。一类是地址总线,这一总线上的数据只会是从处理器向外设“流”,是单向的。另一类则是数据总线,用来将数据从处理器传送到外设(从处理器的角度来说是写操作)或者是将数据从外设传送到处理器(从处理器的角度来说是读操作),显然,数据总线是双向的。也就是说,在我们的嵌入式系统中同时存在地址总线和数据总线将所有需要与处理器进行通讯的芯片连在一起的。

总线是有宽度的,正如我们的路分为“三车道”或是“四车道”,我们说32位处理器,是指其数据总线宽度是32位,也就是“有32辆车能同时跑”,显然,宽度越是宽我们的处理器速度就越是快,因为我们从外设芯片存取数据的速度会更快,这就是为什么我们的计算机向64位发展的原因。同样的,地址总线也是有宽度的,对于32位处理器其最大宽度也就是32位。

总线的概念有了,那接下来的一个问题是,即使是每一个外设都有一个地址,那这一地址记在哪里呢?是放在外设芯片上吗?如果这样的话,那就有一个问题,每一类外设的地址必须是不能重叠的,而当一个产品中需要两块一样的芯片的话,两块芯片的地址就无法区分了,看来这样操作存在问题。还有,如果这样的话每一个外设也得与(比如,32根)数据总线完全相连,并监听数据线以了解处理器是不是在“叫”自己,这样很是复杂。此外,地址也有可能因为外设种类的增多而用光。总的来说地址不能存放在外设芯片,那如何让外设知道,此时它是被处理器招换从而需要进行读写访问的呢?答案就是芯片的片选(CS, chip select)信号,或者又号使能(ENable)信号。

(3)片选(CS 或EN)
片选信号对于外设芯片来讲,就是一个(也是一根)通知信号,告诉芯片“嘿,请开门,我要放些东西进来,或是拿些东西走”,这里的东西只能是数据,不可能是玉米棒什么的。那有个问题,这个信号源从哪里来呢?显然,只能从处理器来。那是不是也是像总线那样,每一个芯片都共用一根线连在一起呢?如果这样,可能处理器“一叫开门”所有的芯片都将“门”打开了。如果是处理器写数据,那可能所有的芯片都被写入同样的数据。而取数据时,每个外设芯片都向外“扔”数据,这一定会造成数据总线冲突,因为有的芯片向总线上“扔”1,有的则“扔”0,这种情况下处理器一定会“发疯”的,因为它不知道应当得到1还是0。

即然这样,那显然不能将所有的片选信号连在一起了,只能是各芯片的片选信号独立。前面提到了地址总线,我们是采用一根地址线连一个外设芯片呢?还是采用其它的方法。如果采用一根地址线连一个外设芯片,那可能最多只能挂接32个芯片了,这显然不行。其实,在现实中,是采用32位的数字来表示一个外设芯片的地址的,比如1可以表示芯片A,而6534可以表示另外一个芯片B,等等。由此看来,理论上我们可以表示2的32次方(4294967296)个设备,之所以说理论上,是因为有的设备要占用大量的地址。即然这样,那还有一个问题,如果将32位的地址总线转换成芯片的一根片选信号呢?这需要引入译码(器)的概念。

(4)译码(器)
译码器将一个数据转换成一根信号线上的信号,比如3/8译码器,可以将一个位宽是3位的数据转换成8根(2的3次方)完全独立的信号线,当向数据侧写入二进制的011时,对应的是8根线的第3根,当输入二进制的111时,对应的是8根线中的最后一根。有了译码器,处理器的地址线就简化了,只要32根地址线加上外面的译码器,就可以访问大量的外设芯片了。外部设备的选择问题,我们已经解决了,现在还得回头看一看数据总线。

在嵌入式系统中,所有芯片的数据总线可以理解成是直接相连的。之所以用了“可以理解”一词,是因为为了提高总线的负载能力,其中会加入总线驱动器。为了理解,我们看一看我们生活中的自来水,比如,在北京理论上可能所有的水管是连在一起的,但中间可能为了提高水压,存在很多小的水站用来增加供水压力,而不可能全北京所有的自来水自接来自一个水厂。即然所有的数据总线是连在一起的,那就可能会有问题。当向外部设备写数据时,处理器先向地址总线输送目标外设的地址,地址译码器将其转换成一根信号的片选信号送到了目标外设,目标外设收到这一信号后,将“门”打开。接下来处理器将要传送到外设的数据往数据总线上一放,由于只有目标外设芯片打开了“门”,所以数据只会进入到目标外设,而其它的外设什么也不会收到。很好!处理器向外写数据应当没有问题,我们接下来看一看读。读的话,由于数据是从外设输送到处理器的,尽管我们采用和写一样的方法打开目标外设的“门”,但此时,其它的外设也在数据总线上,它们有可能处于1也可能处于0,是不是会影响处理器读取目标外设的数据呢?结果当然不会,但我们得引入另一个概念:高阻态。

(5)高阻态
很显然,当处理器从目标外设读数据时,我们希望其它没有被选上的芯片的数据总线不会对目标外设所要传送的数据有影响,那怎么办呢?实际上,当芯片没有被选中时,其数据总线都处于高阻态。所谓的高阻态,我们可以理解成这一管脚在外设芯片内部是断开的,如此一来,显然不会对处理器从目标外设读取数据造成任何的影响了。我们说当一个芯片没有被选中或是没有被使能时,其数据总线一定是处于高阻态的。前面用了“门”的开和关来打比方,那“门”是指什么呢?是指外设的数据总线,片选信号的作用就是控制将外设的数据总线与处理器的数据总线相连或是断开。

(6)驱动
总线上的数据是谁放上去的我们就说谁是那一时刻的驱动者。也就是说,当处理器向外设写数据时,它是在驱动数据总线的,而当处理器从目标外设读取数据时,目标外设是在驱动数据总线的。对于地址总线,因为只可能从处理器向目标外设写,所以地址总线永远是由处理器驱动的。当一个芯片没有被选中时,我们说它并不驱动数据总线。

(7)三态门
前面我们说到外设芯片的数据总线在没有被选中时其处于高阻态,当被选中时,其电平可能是高(1)或是低(0)。如此一来,我们说外设的数据总线其芯片管脚是属于三态门的,即存在高电平、低电平和高阻态,三个状态。

你可能还想看
《硬件“行话”(续)》以使主题完整!

昵  称:
登录  快速注册
验证码:

点击图片可刷新验证码请点击后输入验证码博客过2级,无需填写验证码

内  容:

同时赞一个

你可能感兴趣的:(职场,嵌入式,硬件,休闲,嵌入式系统)