- 洛谷P3871 [TJOI2010] 中位数
xwztdas
算法数据结构FHQTreap
洛谷P3871[TJOI2010]中位数洛谷题目传送门题目描述给定一个由NNN个元素组成的整数序列,现在有两种操作:1adda\texttt{1add}\textit{a}1adda:在该序列的最后添加一个整数aaa,组成长度为N+1N+1N+1的整数序列。2mid\texttt{2mid}2mid:输出当前序列的中位数。中位数是指将一个序列按照从小到大排序后处在中间位置的数。(若序列长度为偶数,
- 详解3DGS
一碗姜汤
计算机视觉人工智能计算机视觉
4可微分的3D高斯splatting核心目标与表示选择我们的目标是从无法线的稀疏SfM点出发,优化出一种能够实现高质量新视角合成的场景表示。为此,我们选择3D高斯作为基本图元,它兼具可微分的体表示特性和非结构化的显式表示优势,既能支持优化过程,又能实现快速渲染。高斯参数与投影模型3D高斯定义高斯由世界空间中的均值(位置)μ\muμ和协方差矩阵∑\sum∑定义,其概率密度函数为:G(x)=e−12(
- 代码随想录day13二叉树1
皮蛋瘦肉粥_121
二叉树
文章目录二叉树的递归遍历二叉树前序遍历二叉树后序遍历二叉树中序遍历二叉树层序遍历102.二叉树的层序遍历107.二叉树的层序遍历II199.二叉树的右视图637.二叉树的层平均值429.N叉树的层序遍历515.在每个树行中找最大值116.填充每个节点的下一个右侧节点指针117.填充每个节点的下一个右侧节点指针II104.二叉树的最大深度111.二叉树的最小深度二叉树的递归遍历文章讲解确定递归函数的
- 创客匠人揭秘长红 IP 的三力模型:从 193 万发售看 IP 变现本质
创小匠
tcp/ip网络协议网络
在知识付费下半场,为何有的IP昙花一现,而张值符老师能通过创客匠人陪跑实现单场193万变现?其核心在于构建了“愿力、产品力、商业力”的三力模型。一、愿力:IP长红的底层燃料张老师“解决生死困惑”的发心,使其内容天然具备穿透力。创客匠人研究发现,明确“为谁请命”的IP,粉丝粘性比泛领域高2.6倍。某母婴IP将定位从“育儿知识”聚焦到“职场妈妈背奶困境”,内容打开率提升40%,付费转化率达行业均值的3
- 《2025年AI工程师生存报告:掌握Agent开发薪资涨65%》——500家科技企业招聘数据揭示的职场进化法则
知识产权13937636601
计算机人工智能科技
当大模型吞噬基础编码岗位,2025年掌握AI智能体(Agent)开发的工程师薪资中位数突破¥92万/年,较普通AI岗位高出65%。本文基于阿里、腾讯、微软等头部企业招聘数据,首次披露:技能断层危机:传统算法工程师简历淘汰率达73%能力跃迁公式:智能体架构+领域模型=薪资溢价150%职业生存矩阵:30岁未掌握AutoFlow开发面临40%裁员风险数据显示:具备多智能体协同架构能力者晋升总监级时间缩短
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 左神算法之双集合平均值优化操作的最大次数
岳轩子
左神算法算法java开发语言
目录1.题目2.解释3.思路4.代码5.总结1.题目给定两个整数集合a和b,定义magic操作为:从其中一个集合取出一个元素,放入另一个集合。操作后,两个集合的平均值都必须严格大于操作前的平均值。限制条件:不能将任一集合取空(否则无法计算平均值)。如果被移动的元素x在目标集合中已存在,则目标集合的平均值不变(因为集合元素不重复),但源集合的平均值可能改变(因为x被移除)。问题:最多可以进行多少次这
- 什么是回归模型,什么是自回归模型?
杰瑞学AI
ComputerknowledgeAI/AGINLP/LLMs回归数据挖掘人工智能
在统计学和机器学习中,回归模型和自回归模型都是用来预测或建模变量之间关系的工具,但它们在数据类型和变量依赖关系上有着关键的区别。回归模型(RegressionModel)回归模型是一种统计方法,用于建立一个或多个自变量(independentvariables)与一个因变量(dependentvariable)之间的关系。它的主要目标是预测因变量的值,或者理解自变量如何影响因变量。核心思想:假设因
- 使用argparse封装python程序为命令行工具
纪伊路上盛名在
生信推文-pythonpython开发语言自动化
小规模的python代码,jupytercell中直接运行,相当于该py文件直接python运行,但是像shell脚本一样,给予参数自由度设置,更方便分析,也就是我们需要传入参数进行重复性、同质性的操作。Q:如何使用argparse将Python程序封装为可调用的命令行工具?比如说我有一个函数,各个模块我已经写好了,这里引用一下我之前上统计学习课的时候举的一个HMM的例子,简单来说,就是一阶HMM
- 上下料引导相机十大品牌横评:2025国产领军队如何逆袭国际巨头?
lingling009
数码相机
核心结论速览:✓迁移科技EpicEyeL:动力电池产线实测定位精度±0.06mm✓基恩士IV3系列:镜面件识别率99.2%,价格超50万✓欧姆龙FZ5:普通工件性价比之选,但微光场景失效率>15%✓技术趋势:动态补偿+多光谱融合成2025决胜点一、国产破局者:迁移科技EpicEyeL(工业级性价比之王)实战场景:某新能源汽车电池托盘产线核心参数对比:指标迁移科技行业均值价值差幅工作距离0.5-3.
- matlab SAR图像均值滤波
点云侠
matlab与合成孔径雷达matlab均值算法开发语言计算机视觉人工智能算法
目录一、算法原理1、计算过程2、参考文献二、代码实现三、结果展示一、算法原理1、计算过程 SAR图像的均值滤波是将平滑窗口内所有像元的强度值进行平均计算,然后赋给平滑窗口的中心像元,其数学表达式为:Ri,j=1n2∑
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 图片批量去重---(均值哈希、插值哈希、感知哈希、三/单通道直方图)
ghx3110
数据/脚本处理均值算法哈希算法直方图图片去重
一、整体步骤本脚本中,关键步骤包括以下步骤:1、图片加载:脚本会遍历指定的图片目录,将所有图片加载到内存中。2、图像预处理:比较之前,通常需要对图片进行预处理,如调整大小、灰度化或直方图均衡化,以消除颜色、尺寸等因素的影响。3、相似度计算:图像相似度的衡量有很多种方法,如像素级别的差异(均方误差)、结构相似度指数(SSIM)、归一化互信息(NMI)或者哈希算法(如PCA-SIFT、BRIEF等)。
- Python-OpenCV-图像滤波
卡朗
PythonOpenCVpythonopencv计算机视觉人工智能图像处理
图像除了包含对应灰度或彩色信息,还包含一些无用的噪点等造成的不均匀扭曲。滤波可以清除这些噪点,平滑图像细节,使得图像更加清晰。均值滤波均值滤波器的原理是将每个像素的灰度值替换为其周围像素灰度值的平均值。其核心思想是去除图像中的高频噪声,同时保留图像中的低频信息。在进行均值滤波操作时,需要定义一个滤波模板(卷积核),通常是一个矩形区域,其大小由模板的宽度和高度决定。在模板中的每一个像素,都会与该像素
- C语言课程训练系统题-一维数组
pitepa
C语言课程练习题c语言算法
C语言课程训练系统题-一维数组1.创建并输出一个一维数组(含20个元素),数组元素的值分别是下标的3倍多22.输入10个数,找出其中最小和最大的数及其位置3.输入10个数,找出最大的数及其位置4.编写程序计算一个包含10个整数的数组中所有整数的平均值(平均值计算为双精度浮点数)。5.利用数组计算fibonacci数列的前10个数,即1,1,2,3,5,……,并按每行打印5个数的格式输出6.编程实现
- 【对比】DeepAR 和 N-Beats
TIM老师
时序预测
1.DeepAR1.1核心思想提出者:亚马逊(Amazon)团队于2018年提出。目标:针对多变量时间序列进行概率预测(ProbabilisticForecasting),输出预测值的分布(如均值、方差、置信区间),而非单一确定性预测。适用场景:适用于具有多变量、多目标的时间序列预测任务(如零售销售预测、能源负荷预测)。1.2模型结构RNN架构:基于长短时记忆网络(LSTM)或门控循环单元(GRU
- CART算法全解析:分类回归双修的决策树之王
大千AI助手
人工智能Python#OTHER算法分类回归决策树数据挖掘CARTDecisionTree
CART(ClassificationandRegressionTrees)是决策树领域的里程碑算法,由统计学家Breiman等人在1984年提出。作为当今最主流的决策树实现,它革命性地统一了分类与回归任务,其二叉树结构和剪枝技术成为现代集成学习(如随机森林、XGBoost)的基石。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕
- 数据分析方法——常用的数据分析指标和术语
数字天下
数据分析人工智能数据挖掘
在进行数据分析时,我们往往不会对原始的一条一条的数据直接进行分析,因为那毫无意义。通常,需要对数据先做一些聚合运算,比如求和、求平均值、计数等,也就是会用到一些分析指标和术语,这些指标和术语可以帮助我们打开思路,从多种角度对数据进行深度解读。1、平均数(average)一般来说是指算术平均数,也就是一组数据的算术平均值,即全部数据累加除以数据个数的结果。例如:某公司1-4月的销售额分别为200万、
- LangChain实战:利用LangChain SQL Agent和GPT进行文档分析和交互
Cc不爱吃洋葱
langchaingptpromptchatgptai人工智能机器学习
前言我最近接触到一个非常有趣的挑战,涉及到人工智能数字化大量文件的能力,并使用户可以在这些文件上提出复杂的与数据相关的问题,比如:数据检索问题:涉及从数据库中获取特定数据点或数据集,例如“电子产品类别中有多少产品?”或“2021年第四季度总销售额是多少?”汇总查询:需要对数据进行总结的问题,如计算平均值、求和、计数等,例如“所有已上架产品的平均价格是多少?”或“每个地区客户的总人数是多少?”数据关
- D函数.py
是紫焅呢
python开发语言青少年编程visualstudiocode学习方法
前言:函数是编程中的基础概念,它们允许我们封装一段代码,以便在需要时反复调用。通过使用函数,我们不仅可以提高代码的可读性和可维护性,还可以减少重复代码的出现。目录一、函数到底是个啥玩意儿?二、为啥要用函数?三、写第一个函数试试水四、几何计算:从圆面积开始圆面积计算矩形面积计算三角形面积计算五、数学问题:挑战一下自己斐波那契数列阶乘计算素数检查六、列表操作:算算平均值七、看看这些函数到底行不行八、别
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- 人工智能-准确率(Precision)、召回率(Recall) 和 F1 分数
高效匠人
人工智能人工智能
嗯,用户让我详细解释准确率、召回率和F1分数这三个概念在大模型中的应用。首先,我需要确认自己对这些概念的理解是否正确。准确率(Precision)是指预测为正类中实际为正的比例,召回率(Recall)是实际正类中被正确预测的比例,而F1分数是两者的调和平均数。不过,用户提到的是“大模型”,可能指的是像GPT这样的大型语言模型,所以需要考虑这些指标在自然语言处理任务中的具体应用场景,比如文本分类、实
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- Day48打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾:随机张量的生成:torch.randn函数在PyTorch中,torch.randn()是一个常用的随机张量生成函数,它可以创建一个由标准正态分布(均值为0,标准差为1)随机数填充的张量。这种随机张量在深度学习中非常实用,常用于初始化模型参数、生成测试数据或模拟输入特征。torch.randn(*size,out=None,dtype=None,layout=torch.strided
- 使用python生成一个均值为0的随机数
fK0pS
python均值算法开发语言
在Python中生成均值为0的随机数,可以使用random模块或numpy.random模块。以下是几种常见方法:1.使用random模块(标准库)(1)生成[-1,1)之间的均匀分布随机数importrandom#生成[-1,1)之间的随机数(均匀分布)rand_num=random.uniform(-1,1)print(rand_num)(2)生成[-1,1)之间的随机整数rand_int=r
- 数据挖掘与机器学习 期末复习整理
无敌摸鱼高手
数据挖掘与机器学习数据挖掘机器学习人工智能期末复习知识总结
1.分类:–有类别标记信息,因此是一种监督学习–根据训练样本获得分类器,然后把每个数据归结到某个已知的类,进而也可以预测未来数据的归类。2.聚类:–无类别标记,因此是一种无监督学习–无类别标记样本,根据信息相似度原则进行聚类,通过聚类,人们能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间的关系3.聚类方法:划分方法-(分割类型)K-均值K-Means顺序领导者方法基于模型的方法
- vue3 平均值计算
海天胜景
vue.js前端javascript
在Vue3中计算平均值,你可以使用JavaScript的基本运算功能。这里我将演示几种常见的方法来实现这个目的。假设你有一个数组,你想要计算其所有元素的平均值。方法1:使用计算属性(ComputedProperty)这是最Vue的方式,通过计算属性(computedproperty)来计算平均值。平均值:{{average}}import{computed,ref}from'vue';//示例数据
- RA信号处理
gihigo1998
信号处理
ra_snr_gui.m作用:统计不同信噪比下,五种信号的峰值旁瓣比RA和低高频均值比RM,绘制结果,参考图3.11和3.12DFCW_RA_SNR.m作用:产生正交离散频率编码信号,并计算峰值旁瓣比RA和低高频均值比RMLFM_RA_SNR.m作用:产生线性调频信号,并计算峰值旁瓣比RA和低高频均值比RMOFDMLFM_RA_SNR.m作用:产生正交频分线性调频信号,并计算峰值旁瓣比RA和低高频
- 关于metrics.classification_report报告中指标解读
junjunzai123
人工智能
函数的应用主要是对类目分类相关的业务做评测使用主要介绍一下:macroavg和weightedavg区别指标解释1.macroavg(宏平均)定义:对每个类别的指标(如精确率、召回率、F1-score)取算术平均值,不考虑类别样本数量。计算公式:macro_avg=(指标_类别1+指标_类别2+...+指标_类别N)/N特点:平等对待每个类别:无论类别样本数量多少,每个类别的权重相同。适用场景:当
- 推荐文章:Faster_Mean_Shift - GPU加速的像素嵌入框架利器
乌芬维Maisie
推荐文章:Faster_Mean_Shift-GPU加速的像素嵌入框架利器去发现同类优质开源项目:https://gitcode.com/在生物医学图像处理和细胞追踪领域,高效且精准的算法是必不可少的工具。今天,我们向您推荐一个优秀的开源项目——Faster_Mean_Shift,这是一个基于GPU加速的快速均值漂移算法,特别为递归神经网络(RNN)像素嵌入框架设计,用于整体细胞分割和跟踪。1、项
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo