- 使用Python编写你的第一个算法交易程序
盼达思文体科创
Python量化金融python算法numpycondapandas金融
背景Background最近想学习一下量化金融,总算在盈透投资者教育(IBKRCampus)板块找到一篇比较好的算法交易入门教程。我在记录实践过程后,翻译成中文写成此csdn博客,分享给大家。如果你的英语好可以直接看原文。原文在数据准备阶段,采用了pandas_datareader.data读取网络数据,实际中出现了很多问题,我换成了yfinance。可以参考文末完整代码。参考资料:https:/
- Simulink 配置参数中指定的设置创建 out.mat 文件时遇到了问题
云缘若仙
matlab
报错:Unabletocreatefile'out.mat'specifiedin'ConfigurationParameters'>'DataImport/Export'>'LogDatasetdatatofile'.Possiblecausesforthisinclude:thespecifieddirectorydoesnotexist,thedirectoryorthefilearenot
- 宇树G1嵌入式软件架构及技术实现
爱吃青菜的大力水手
架构fpga开发机器人算法
Opensourcedatacollection:https://github.com/unitreerobotics/avp_teleoperateOpensourcelearningalgorithms:https://github.com/unitreerobotics/unitree_IL_lerobotOpensourcedatasetsandmodels:https://hugging
- 用连接数据库的方式读取excel
Vanqqqq
SQLC#excel
之前喜欢用hssfworkbook直接将excel读取到workbook中,这样直接对sheet进行解析。可是当数据量很大,数据文件到5M以后c#的内存占用很大,就会很卡了。所以改用这种方法读取到dataset中,再对数据进行解析。直接上代码:publicstaticDataSetGetExcelTableByOleDB(stringstrExcelPath){try{DataTabledtExc
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- python运行路径和脚本文件所在路径
Wiseehw
Python
我在sublimeText2编辑python脚本程序,用ipython导入脚本模块,打开文件时总是报错,原来是路径问题deffile2matrix(filename):fp=open(filename,'r')datalines=fp.readlines()lenlines=len(datalines)dataSet=np.zeros((lenlines,3))labels=[]index=0fo
- yolo使用的一些脚本
一休哥※
YOLO深度学习python
合并yolo标注label输入两个路径的labels,可以特定的32类别的标注合并到target_dir目录中的txt中#-*-coding:utf-8-*-#@Time:2024/6/1917:57#@Author:sjh#@Site:#@File:python_txt.py#@Comment:importos#定义源目录和目标目录source_dir=r"E:\Download\Dataset
- 【OpenCV】双目相机计算深度图和点云
AI大权
计算机视觉opencv双目相机点云python
双目相机计算深度图的基本原理是通过两台相机从不同角度拍摄同一场景,然后利用视差来计算物体的距离。本文的Python实现示例,使用OpenCV库来处理图像和计算深度图。1、数据集介绍Mobilestereodatasets由PanGuanghan、SunTiansheng、TobyWeed和DanielScharstein在2019-2021年期间创建的,使用了RogerDai、KyleMeredi
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- GDAL库简介及函数说明
海绵波波107
Python#Python的遥感应用python
目录简介常用函数说明打开和读取影像gdal.Open()dataset.RasterXSizedataset.GetGeoTransform()dataset.GetProjection()dataset.GetRasterBand()dataset.ReadAsArray()写入和输出影像gdal.GetDriverByName()driver.Create()out_dataset.SetGe
- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- Calculate Correlation Matrix
六月五日
Deep-ML
CalculateCorrelationMatrixWriteaPythonfunctiontocalculatethecorrelationmatrixforagivendataset.Thefunctionshouldtakeina2DnumpyarrayXandanoptional2DnumpyarrayY.IfYisnotprovided,thefunctionshouldcalculat
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- mnist数据集下载及使用
小句
pytorch机器学习
#mnist数据集在百度云盘里#链接:https://pan.baidu.com/s/1ca2rL2-0_JLtnH1YQ3otvA#提取码:uq3d#pytorch自带数据集的使用importtorchvisionfromtorchvision.datasetsimportMNISTmnist=MNIST(root="./data",train=True,download=False)print
- AI应用完整加载数据集配置神经网络配置训练信息训练模型与保存模型到本地------AI
旧约Alatus
AI软件架构设计人工智能stablediffusionchatgptAIGCDALL·E2AI-nativebard
packagecom.alatus.djl.web;importai.djl.Application;importai.djl.MalformedModelException;importai.djl.Model;importai.djl.basicdataset.cv.classification.ImageFolder;importai.djl.basicdataset.cv.classifi
- DataSet:数据挖掘与机器学习应用
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
DataSet:数据挖掘与机器学习应用作者:禅与计算机程序设计艺术1.背景介绍1.1.数据挖掘与机器学习的兴起近年来,随着互联网、物联网、云计算等技术的快速发展,全球数据量呈现爆炸式增长,数据的积累为数据挖掘和机器学习提供了丰富的素材。数据挖掘和机器学习作为从数据中提取有用信息和知识的关键技术,正在各个领域发挥着越来越重要的作用,例如商业智能、金融分析、医疗诊断、网络安全等等。1.2.DataSe
- pytorch 人脸修复_修复pytorch数据加载器
weixin_26729375
人工智能pythonjava人脸识别
pytorch人脸修复黑客数据科学工作流程(Hackingdatascienceworkflows)Icameacrossaninterestingproblemrecently.AteammateandIwereworkingonaseriesofDeepLearningexperimentsthatinvolvedanimagedatasetthatspannedhundredsofgigab
- 视频分析:基于目标检测(YOLO)实现走路看手机检测、玩手机检测、跌倒检测等
shiter
人工智能系统解决方案与技术架构音视频深度学习人工智能
文章大纲背景行为检测的定义与挑战视频分析数据集目标检测数据集自制数据集思路Kaggle数据集COCO数据集OpenImagesDatasetV7人类行为视频分析yolo进行行为分析的检测看手机行为检测--方法与数据集方法数据集跌倒行为检测--方法与数据集跌倒检测-数据集跌倒检测-目标检测跌倒检测-姿态估计参考文献与学习路径背景行为检测在自动驾驶、视频监控等领域的广阔应用前景使其成为了视频分析的研究
- 深度学习笔记——pytorch构造数据集 Dataset and Dataloader
旺仔喔喔糖
机器学习笔记pytorch人工智能深度学习
系列文章目录机器学习笔记——梯度下降、反向传播机器学习笔记——用pytorch实现线性回归机器学习笔记——pytorch实现逻辑斯蒂回归Logisticregression机器学习笔记——多层线性(回归)模型Multilevel(LinearRegression)Model深度学习笔记——pytorch构造数据集DatasetandDataloader深度学习笔记——pytorch解决多分类问题M
- 【Pytorch实战教程】让数据飞轮转起来:PyTorch Dataset与Dataloader深度指南
若北辰
Pytorch实战教程pytorch人工智能python
文章目录让数据飞轮转起来:PyTorchDataset与Dataloader深度指南一、为什么需要数据管理组件?二、Dataset:数据集的编程接口2.1自定义Dataset三要素2.2实战案例:图像分类数据集三、Dataloader:高效数据流水线3.1核心参数解析3.2数据流可视化3.3多卡训练支持四、综合实战:构建完整数据流五、高级技巧与常见问题5.1内存优化技巧5.2常见错误排查5.3性能
- python根目录的生成
影月L
python
python根目录的生成importosfromosimportgetcwdwd=getcwd()#os.getcwd()方法能够返回当前工作目录datasets_path="data/"#里面有个文件夹data,图片就存于次文件夹中photos_names=os.listdir(datasets_path)#返回指定的文件夹包含的文件或文件夹的名字的列表photos_names=sorted(p
- 基于CLIP视觉语言大模型的行人重识别方法的简单框架设计
max500600
开发语言算法开发工具视觉语言clip
以下是一个基于CLIP视觉语言大模型的行人重识别方法的简单框架设计,用于数据集测试。我们将使用torch和clip库,假设数据集是一个包含行人图像的文件夹结构,每个子文件夹代表一个行人身份。步骤概述安装必要的库加载CLIP模型定义数据集类提取图像特征进行重识别测试代码实现importosimporttorchimportclipfromtorch.utils.dataimportDataset,D
- python代码主要围绕脂肪胰相关数据展开了一系列数据处理、分析、建模和评估工作
max500600
python算法python开发语言机器学习
importnumpyasnpimportpandasaspdimporttorchfromtorch.utils.dataimportDataset,DataLoader,TensorDatasetimportreimportmatplotlib.pyplotaspltimportseabornassnsimportscipyfromdatetimeimportdatetimefromsklea
- 通过matlab实现机器学习的小项目示例
MATLAB卡尔曼
课题推荐与讲解机器学习matlab支持向量机
一个基于鸢尾花分类的MATLAB机器学习小项目示例,涵盖数据预处理、模型训练、评估及可视化全流程,适合入门学习。文章目录项目目标完整代码实现代码说明运行结果数据加载与探索数据预处理模型训练模型评估可视化决策边界展方向项目目标使用鸢尾花数据集(IrisDataset),训练一个分类模型,根据花萼和花瓣的尺寸(4个特征)预测花的类别(3种:Setosa,Versicolor,Virginica)。完整
- YOLOv8-ultralytics-8.2.103部分代码阅读笔记-trainer.py
红色的山茶花
YOLO笔记
trainer.pyultralytics\engine\trainer.py目录trainer.py1.所需的库和模块2.classBaseTrainer:1.所需的库和模块#UltralyticsYOLO,AGPL-3.0license"""Trainamodelonadataset.Usage:$yolomode=trainmodel=yolov8n.ptdata=coco8.yamlimg
- 3D数据可视化与SVM分类
t0_54coder
编程问题解决手册3d信息可视化支持向量机个人开发
在数据科学和机器学习中,数据可视化是理解数据分布和模型表现的关键环节。本文将通过一个实例展示如何使用Python的Matplotlib库来绘制3D数据点和SVM分类面的可视化,解决我在编程中遇到的问题。问题背景最近,我在完成一项作业时尝试重现一个3D数据的SVM分类图,但结果只得到了一个空白窗口,这让我很困惑。以下是原始代码:importnumpyasnpfromsklearn.datasetsi
- 使用一个大语言模型对另一个大语言模型进行“调教”
大霸王龙
python人工智能python
使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:1.准备工作安装必要的库•Transformers:用于加载和训练模型。•Datasets:用于处理数据集。•PEFT:用于微调,特别是LoRA(Low-RankAdaptation)等技术。•Accelerate:用
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号