- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 如何理解,在数学上完备的 这样的描述?
fK0pS
经验分享
如何理解,在数学上完备的这样的描述?在数学中,"完备"这一术语具有多个含义,具体取决于它应用的上下文。以下是几个常见领域中“完备”的定义和理解:完备性定理(逻辑与数学基础):在逻辑和数学基础中,特别是与形式语言和证明系统相关的领域,完备性通常指的是一个系统能够证明所有在该系统内部被认为是“真”的命题。换句话说,如果一个命题在某个逻辑系统中是真的(即,在所有模型中为真),则该系统应该能够提供一个证明
- Spring Boot在Java领域的分布式系统应用
Java技术栈实战
javaspringbootwpfai
SpringBoot在Java领域的分布式系统应用关键词:SpringBoot、分布式系统、微服务架构、服务治理、分布式配置、服务容错、Java开发摘要:本文系统解析SpringBoot在Java分布式系统中的核心应用,从基础架构到高级实践逐层展开。首先阐述分布式系统核心概念与SpringBoot的技术优势,通过CAP定理、一致性模型等理论构建技术框架;然后结合具体代码示例讲解服务注册发现、配置管
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- [信号与系统]IIR滤波器与FIR滤波器的表达、性质以及一些分析
庭师_Official
信号与系统信号与系统信号处理
前言阅读本文需要阅读一些前置知识[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。[信号与系统]有关滤波器的一些知识背景[信号与系统]关于LTI系统的转换方程、拉普拉斯变换和z变换[信号与系统]关于双线性变换IIR滤波器的数学表达式IIR(InfiniteImpulseResponse)滤波器的输出信号y[n]y[n]y[n]可以用输入信号x[n]x[n]x[n]和滤波器系数表示
- 数学:什么是余弦定理?
千码君2016
数学几何原本几何构造法向量点积法坐标系解析法反推角的大小合力大小文本向量相似性度量
余弦定理是欧氏平面几何学基本定理,它是勾股定理的推广,描述了任意三角形中三条边和一个角的余弦之间的关系。具体内容如下:历史渊源:对余弦定理的研究可追溯到公元前3世纪欧几里得的《几何原本》,但最初它只是以几何定理的身份出现。直到16世纪,法国数学家韦达首次写出了三角形式的余弦定理。17-18世纪,对余弦定理的应用不多,直到19-20世纪,余弦定理才得到广泛应用。应用场景:在解三角形问题中,若已知三边
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- Power Strings POJ - 2406(kmp算法求最小循环节)
poj-2406题目大意:给出一个字符串问它最多由多少相同的字串组成如abababab由4个ab组成题目分析:要用到KMP中的next数组来计算最小循环节。KMP最小循环节、循环周期:定理:假设S的长度为len,则S存在最小循环节,循环节的长度L为len-next[len],子串为S[0…len-next[len]-1]。(1)如果len可以被len-next[len]整除,则表明字符串S可以完全
- 08 Redis之集群的搭建和复制原理+哨兵机制+CAP定理+Raft算法
5Redis集群2.8版本之前,Redis采用主从集群模式.实现了数据备份和读写分离2.8版本之后,Redis采用Sentinel哨兵集群模式,实现了集群的高可用5.1主从集群搭建首先,基本所有系统,“读”的压力都大于“写”的压力Redis的主从集群是一个“一主多从”的读写分离集群(运用哨兵机制后会升级为3主多从)。集群中的Master节点负责处理客户端的读写请求,而Slave节点仅能处理客户端的
- 深度学习——激活函数
笨小古
深度强化学习深度学习人工智能
深度学习——激活函数激活函数是人工是人工神经网络中一个关键的组成部分,它被设计用来引入非线性特性到神经网络模型中,使神经网络能够学习和逼近复杂的非线性映射关系。1.引入非线性能力没有激活函数的神经网络本质上只是线性变换的叠加,无论多少层也只能表示线性函数,能力有限。激活函数使网络可以逼近任意复杂函数(依据万能逼近定理)2.控制信息流动某些激活函数可以抑制部分神经元的输出(如ReLU),是模型更稀疏
- 相机标定与校正原理及代码(Python、C++)实现
吃旺旺雪饼的小男孩
自动驾驶pythonc++自动驾驶
相机标定与校正一、相机标定理论背景1.1相机模型1.2畸变模型二、详细标定流程2.1数据采集2.2角点提取2.3构造对应关系2.4标定求解2.5图像校正2.6标定精度分析三、Python代码详细示例四、C++代码详细示例五、常见问题与注意事项六、总结一、相机标定理论背景1.1相机模型针孔模型:相机可以用针孔模型描述,即假设所有光线都通过一个单一的光心,然后在成像平面上成像。该模型定义了相机的内参和
- 扩展欧几里得算法求逆元
hesorchen
#扩展欧几里得算法#逆元
扩展欧几里得算法应该是最优的求逆元算法之一,他和费马小定理具有同样的时间复杂度O(log(n))O(log(n))O(log(n)),但是费马小定理需要模数为质数,扩展欧几里得算法则不需要。逆元定义若aaa与ppp互素,则满足(a×x)modp=1(a\timesx)modp=1(a×x)modp=1的xxx为aaa的逆元。显然,有(k×p+1)modp=1(k\timesp+1)modp=1(k
- 读书笔记—颠覆式创新:移动互联网时代的生存法则
weixin_33688840
操作系统嵌入式移动开发
颠覆式创新:移动互联网时代的生存法则作者:李善友引言有一个非常著名的哥德尔第一定理。它这样讲:任何一个体系,它必是内部和外部自洽的,这样才能有效运行。但是任何一个内部逻辑完全自洽的体系,一定存在自身的边界,一旦越过边界,这套体系一定是失效的,边界外是另一个新的体系。哥德尔是一个数学家,他的体系是一个纯粹的数学体系,即便是这样的数学体系,也会存在逻辑陷阱,何况其他体系呢?我们生活在一个已知的世界,往
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 大数定律与中心极限定理:概率论的双子星
Algo-hx
概率论与数理统计概率论
目录引言5大数定律与中心极限定理5.1大数定律:频率的稳定性5.1.1辛钦大数定律定理内容5.1.2伯努利大数定律定理内容5.1.3切比雪夫大数定律定理内容对比总结表5.2中心极限定理:正态分布的普适性5.2.1独立同分布情形定理内容图释5.2.2李雅普诺夫定理定理内容核心思想图释5.2.3棣莫弗-拉普拉斯定理定理内容应用条件图释对比总结表5.3定理对比:LLNvsCLT引言当随机现象的个体行为无
- 通信之PCM
玖Yee
信息与通信
PCM即脉冲编码调制,是一种将模拟信号转换为数字信号的技术。原理-采样:对模拟信号按一定的时间间隔进行采样,获取离散的样本值。根据奈奎斯特采样定理,采样频率应不低于模拟信号最高频率的两倍,以保证能够无失真地恢复原始信号。-量化:将采样得到的样本值按照一定的量化等级进行量化,将其映射到有限个离散的数值上。量化过程会引入量化误差,量化等级越多,量化误差越小,信号还原度越高。-编码:把量化后的数值用二进
- 网络流总结
癹魃♭
图论算法
目录一些概念最大流最大流—最小割定理算法实现——FF增广EK算法Dinic算法经典模型1.1无源汇上下界可行流1.2有源汇上下界可行流1.3有源汇上下界最大流1.3有源汇上下界最小流一些trick最小割求法模型求割边数量基本模型平面图最小割转对偶图最短路最大权闭合图最大密度子图最小点权覆盖集最大点权独立集最小路径覆盖文理分科模型切糕模型(距离限制模型)最小割树费用流求法建模技巧拆点有源汇上下界最小
- 探索依赖类型:从理论到实践
t0_54program
大数据与人工智能个人开发
在编程语言的广袤世界里,依赖类型(DependentTypes)宛如一颗璀璨的明珠,逐渐吸引着众多开发者的目光。它不仅为我们带来了更为精确和灵活的类型表达,还在定理证明、元编程等领域展现出了巨大的潜力。依赖类型的定义与理解依赖类型,简单来说,就是类型可以依赖于值。在传统的编程语言如Haskell和Java中,我们常见的是类型依赖于其他类型,比如List类型需要指定其内部元素的类型,像ListofI
- 【概率论】正态分布的由来——从大一同学的视角出发
应有光
基础知识概率论机器学习
数学系大佬勿喷,本文以非数同学的视角出发0.启发与思考正态分布平时常常遇到,无论是在概率论中的“中心极限定理”,还是平时在学习ML中遇到的“高斯混合模型”,或者是在深度学习中,常常将一些数据假设为正态分布的情况。我们平时可能由于知到中心极限定理,因此默认正态分布是一个很好的分布。但是,这为什么不能是平均分布呢?二项分布呢?泊松分布?或者是其它抽样分布?接下来我们将简要探讨正态分布的由来:1.背景我
- 机器学习新手指南:用Python实现贝叶斯方法与概率模型
人工智能教程
机器学习python人工智能深度学习cnn自然语言处理分类
在机器学习的世界里,贝叶斯方法和概率模型是一类非常重要的工具。它们通过概率的方式来建模和解决问题,能够提供对数据的深刻理解和预测的不确定性估计。今天,我们将从零开始,用Python实现一个简单的贝叶斯分类器,带你走进贝叶斯方法的世界!一、贝叶斯方法与概率模型:初识(一)什么是贝叶斯方法?贝叶斯方法是一种基于贝叶斯定理的统计方法,它通过结合先验知识和数据来更新对问题的理解。贝叶斯定理的核心公式如下:
- 【大模型学习路线首发】 AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!
AI大模型-大飞
人工智能学习程序员大模型学习AI大模型大模型大模型教程
1.打好基础:数学与编程数学基础线性代数:理解矩阵、向量、特征值、特征向量等概念。推荐课程:KhanAcademy的线性代数课程、MIT的线性代数公开课。微积分:掌握导数、积分、多变量微积分等基础知识。推荐课程:KhanAcademy的微积分课程、MIT的微积分公开课。概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。推荐课程:KhanAcademy的概率与统计课程、Coursera的“Pro
- 大矩阵可以分解为低秩矩阵的乘积
二分掌柜的
数学物理矩阵线性代数
大矩阵可以分解为低秩矩阵的乘积flyfish核心结论:矩阵的秩分解定理任何矩阵均可分解为两个秩等于其自身秩的矩阵的乘积。设矩阵A∈Rm×nA\in\mathbb{R}^{m\timesn}A∈Rm×n的秩为rrr,则存在矩阵B∈Rm×rB\in\mathbb{R}^{m\timesr}B∈Rm×r和C∈Rr×nC\in\mathbb{R}^{r\timesn}C∈Rr×n,使得A=BCA=BCA=
- 样本与抽样分布:统计推断的基石
Algo-hx
概率论与数理统计概率论
目录引言6样本与抽样分布6.1总体与样本核心概念6.2统计量:样本的数学摘要定义常用统计量重要性质证明:E(S2)=σ2E(S^2)=\sigma^2E(S2)=σ26.3三大抽样分布:统计推断的支柱6.3.1χ2\chi^2χ2分布:多个独立标准正态分布变量的平方和定义性质6.3.2ttt分布(学生氏分布)定义性质6.3.3FFF分布定义性质6.4正态总体的抽样分布定理6.4.1单正态总体情形6
- NewSQL 架构设计:如何实现高性能与高可用性
AI天才研究院
ai
NewSQL架构设计:如何实现高性能与高可用性关键词:NewSQL、分布式数据库、高性能、高可用性、ACID、CAP定理、分布式事务摘要:本文将深入解析NewSQL数据库的核心设计思想,通过生活类比、技术原理解读和实战案例,系统讲解其如何在保证传统关系型数据库ACID特性的同时,实现NoSQL级别的扩展性与高可用性。我们将从核心概念、架构设计、关键技术(如分布式事务、一致性协议)到实际应用场景,逐
- 高等代数(四)-矩阵03:矩阵乘积的行列式与秩
u013250861
高等代数矩阵线性代数
§3§3§3矩阵乘积的行列式与秩在这一节我们来看一下矩阵乘积的行列式与秩和它的因子的行列式与秋的关系.关于乘积的行列式有定理1设A,B\boldsymbol{A},\boldsymbol{B}A,B是数域PPP上的两个n×nn\timesnn×n矩阵,那么∣AB˙∣=∣A∣∣B∣.|\dot{AB}|=|A||B|\text{.}∣AB˙∣=∣A∣∣B∣.即矩阵乘积的行列式等于它的因子的行列式的乘
- MongoDB:大数据分布式存储的理想之选
大数据洞察
mongodb大数据分布式ai
MongoDB分布式存储架构:从第一性原理到大数据实践的技术全景解析关键词MongoDB、分布式存储、NoSQL、大数据分片、副本集、CAP定理、BASE理论摘要本报告以MongoDB为核心,系统解析其作为大数据分布式存储理想之选的技术本质。通过第一性原理推导(CAP/BASE理论)、层次化架构拆解(分片/副本集/存储引擎)、多维度实践验证(性能优化/部署策略/场景适配),构建从理论到落地的完整知
- C++循环综合运用题
I空j
c++算法数据结构
费马定理不会纸盒的最大体积是多少?#includeusingnamespacestd;intmain(){intn,max=-1,m=0,chicun=0,tiji=0;cin>>n;while(true){tiji=(n-2*chicun)*(n-2*chicun)*chicun;if(tiji>max){max=tiji;}chicun=2*m;if(n-2*musingnamespacest
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">