C++ 对象的内存布局(下)

重复继承

 
下面我们再来看看,发生重复继承的情况。所谓重复继承,也就是某个基类被间接地重复继承了多次。
 
下图是一个继承图,我们重载了父类的f() 函数。
 

 
其类继承的源代码如下所示。其中,每个类都有两个变量,一个是整形(4 字节),一个是字符(1 字节),而且还有自己的虚函数,自己overwrite 父类的虚函数。如子类D 中,f() 覆盖了超类的函数, f1() f2() 覆盖了其父类的虚函数,Df() 为自己的虚函数。
 
class B
{
    public:
        int ib;
        char cb;
    public:
        B():ib(0),cb('B') {}
 
        virtual void f() { cout << "B::f()" << endl;}
        virtual void Bf() { cout << "B::Bf()" << endl;}
};
class B1 :  public B
{
    public:
        int ib1;
        char cb1;
    public:
        B1():ib1(11),cb1('1') {}
 
        virtual void f() { cout << "B1::f()" << endl;}
        virtual void f1() { cout << "B1::f1()" << endl;}
        virtual void Bf1() { cout << "B1::Bf1()" << endl;}
 
};
class B2:  public B
{
    public:
        int ib2;
        char cb2;
    public:
        B2():ib2(12),cb2('2') {}
 
        virtual void f() { cout << "B2::f()" << endl;}
        virtual void f2() { cout << "B2::f2()" << endl;}
        virtual void Bf2() { cout << "B2::Bf2()" << endl;}
       
};
 
class D : public B1, public B2
{
    public:
        int id;
        char cd;
    public:
        D():id(100),cd('D') {}
 
        virtual void f() { cout << "D::f()" << endl;}
        virtual void f1() { cout << "D::f1()" << endl;}
        virtual void f2() { cout << "D::f2()" << endl;}
        virtual void Df() { cout << "D::Df()" << endl;}
       
};
我们用来存取子类内存布局的代码如下所示:(在VC++ 2003 G++ 3.4.4 下)
    typedef void(*Fun)(void);
    int** pVtab = NULL;
    Fun pFun = NULL;
 
    D d;
    pVtab = (int**)&d;
    cout << "[0] D::B1::_vptr->" << endl;
    pFun = (Fun)pVtab[0][0];
    cout << "     [0] ";    pFun();
    pFun = (Fun)pVtab[0][1];
    cout << "     [1] ";    pFun();
    pFun = (Fun)pVtab[0][2];
    cout << "     [2] ";    pFun();
    pFun = (Fun)pVtab[0][3];
    cout << "     [3] ";    pFun();
    pFun = (Fun)pVtab[0][4];
    cout << "     [4] ";    pFun();
    pFun = (Fun)pVtab[0][5];
    cout << "     [5] 0x" << pFun << endl;
   
    cout << "[1] B::ib = " << (int)pVtab[1] << endl;
    cout << "[2] B::cb = " << (char)pVtab[2] << endl;
    cout << "[3] B1::ib1 = " << (int)pVtab[3] << endl;
    cout << "[4] B1::cb1 = " << (char)pVtab[4] << endl;
 
    cout << "[5] D::B2::_vptr->" << endl;
    pFun = (Fun)pVtab[5][0];
    cout << "     [0] ";    pFun();
    pFun = (Fun)pVtab[5][1];
    cout << "     [1] ";    pFun();
    pFun = (Fun)pVtab[5][2];
    cout << "     [2] ";    pFun();
    pFun = (Fun)pVtab[5][3];
    cout << "     [3] ";    pFun();
    pFun = (Fun)pVtab[5][4];
    cout << "     [4] 0x" << pFun << endl;
 
    cout << "[6] B::ib = " << (int)pVtab[6] << endl;
    cout << "[7] B::cb = " << (char)pVtab[7] << endl;   
    cout << "[8] B2::ib2 = " << (int)pVtab[8] << endl;
    cout << "[9] B2::cb2 = " << (char)pVtab[9] << endl;
 
    cout << "[10] D::id = " << (int)pVtab[10] << endl;
    cout << "[11] D::cd = " << (char)pVtab[11] << endl;
 
程序运行结果如下:
 
GCC 3.4.4
VC++ 2003
[0] D::B1::_vptr->
     [0] D::f()
     [1] B::Bf()
     [2] D::f1()
     [3] B1::Bf1()
     [4] D::f2()
     [5] 0x1
[1] B::ib = 0
[2] B::cb = B
[3] B1::ib1 = 11
[4] B1::cb1 = 1
[5] D::B2::_vptr->
     [0] D::f()
     [1] B::Bf()
     [2] D::f2()
     [3] B2::Bf2()
     [4] 0x0
[6] B::ib = 0
[7] B::cb = B
[8] B2::ib2 = 12
[9] B2::cb2 = 2
[10] D::id = 100
[11] D::cd = D
[0] D::B1::_vptr->
     [0] D::f()
     [1] B::Bf()
     [2] D::f1()
     [3] B1::Bf1()
     [4] D::Df()
     [5] 0x00000000
[1] B::ib = 0
[2] B::cb = B
[3] B1::ib1 = 11
[4] B1::cb1 = 1
[5] D::B2::_vptr->
     [0] D::f()
     [1] B::Bf()
     [2] D::f2()
     [3] B2::Bf2()
     [4] 0x00000000
[6] B::ib = 0
[7] B::cb = B
[8] B2::ib2 = 12
[9] B2::cb2 = 2
[10] D::id = 100
[11] D::cd = D
 
下面是对于子类实例中的虚函数表的图:
 
 
 
 
我们可以看见,最顶端的父类B 其成员变量存在于B1 B2 中,并被D 给继承下去了。而在D 中,其有B1 B2 的实例,于是B 的成员在D 的实例中存在两份,一份是B1 继承而来的,另一份是B2 继承而来的。所以,如果我们使用以下语句,则会产生二义性编译错误:
 
D d;
d.ib = 0;               //二义性错误
d.B1::ib = 1;           //正确
d.B2::ib = 2;           //正确

注意,上面例程中的最后两条语句存取的是两个变量。虽然我们消除了二义性的编译错误,但B 类在D 中还是有两个实例,这种继承造成了数据的重复,我们叫这种继承为重复继承。重复的基类数据成员可能并不是我们想要的。所以,C++ 引入了虚基类的概念。
 
 

钻石型多重虚拟继承

 
虚拟继承的出现就是为了解决重复继承中多个间接父类的问题的。钻石型的结构是其最经典的结构。也是我们在这里要讨论的结构:
 
上述的“重复继承”只需要把B1 B2 继承B 的语法中加上virtual 关键,就成了虚拟继承,其继承图如下所示:
 
 
 

 
上图和前面的“重复继承”中的类的内部数据和接口都是完全一样的,只是我们采用了虚拟继承:其省略后的源码如下所示:
 
class B { …… };
class B1 : virtual public B{ …… };
class B2: virtual public B{ …… };
class D : public B1, public B2{ …… };
 
在查看D 之前,我们先看一看单一虚拟继承的情况。下面是一段在VC++2003 下的测试程序:(因为VC++ GCC 的内存而局上有一些细节上的不同,所以这里只给出VC++ 的程序,GCC 下的程序大家可以根据我给出的程序自己仿照着写一个去试一试):
 
    int** pVtab = NULL;
    Fun pFun = NULL;
 
    B1 bb1;
 
    pVtab = (int**)&bb1;
    cout << "[0] B1::_vptr->" << endl;
    pFun = (Fun)pVtab[0][0];
    cout << "     [0] ";
    pFun(); //B1::f1();
    cout << "     [1] ";
    pFun = (Fun)pVtab[0][1];
    pFun(); //B1::bf1();
    cout << "     [2] ";
    cout << pVtab[0][2] << endl;
 
    cout << "[1] = 0x";
    cout << (int*)*((int*)(&bb1)+1) <<endl; //B1::ib1
    cout << "[2] B1::ib1 = ";
    cout << (int)*((int*)(&bb1)+2) <<endl; //B1::ib1
    cout << "[3] B1::cb1 = ";
    cout << (char)*((int*)(&bb1)+3) << endl; //B1::cb1
 
    cout << "[4] = 0x";
    cout << (int*)*((int*)(&bb1)+4) << endl; //NULL
 
    cout << "[5] B::_vptr->" << endl;
    pFun = (Fun)pVtab[5][0];
    cout << "     [0] ";
    pFun(); //B1::f();
    pFun = (Fun)pVtab[5][1];
    cout << "     [1] ";
    pFun(); //B::Bf();
    cout << "     [2] ";
    cout << "0x" << (Fun)pVtab[5][2] << endl;
 
    cout << "[6] B::ib = ";
    cout << (int)*((int*)(&bb1)+6) <<endl; //B::ib
    cout << "[7] B::cb = ";
 
其运行结果如下(我结出了GCC 的和VC++2003 的对比):
 
GCC 3.4.4
VC++ 2003
[0] B1::_vptr ->
    [0] : B1::f()
    [1] : B1::f1()
    [2] : B1::Bf1()
    [3] : 0
[1] B1::ib1 : 11
[2] B1::cb1 : 1
[3] B::_vptr ->
    [0] : B1::f()
    [1] : B::Bf()
    [2] : 0
[4] B::ib : 0
[5] B::cb : B
[6] NULL : 0
[0] B1::_vptr->
     [0] B1::f1()
     [1] B1::Bf1()
     [2] 0
[1] = 0x00454310 ç 该地址取值后是 -4
[2] B1::ib1 = 11
[3] B1::cb1 = 1
[4] = 0x00000000
[5] B::_vptr->
     [0] B1::f()
     [1] B::Bf()
     [2] 0x00000000
[6] B::ib = 0
[7] B::cb = B
 
 
这里,大家可以自己对比一下。关于细节上,我会在后面一并再说。
 
下面的测试程序是看子类D 的内存布局,同样是VC++ 2003 的(因为VC++ GCC 的内存布局上有一些细节上的不同,而VC++ 的相对要清楚很多,所以这里只给出VC++ 的程序,GCC 下的程序大家可以根据我给出的程序自己仿照着写一个去试一试):
 
    D d;
 
    pVtab = (int**)&d;
    cout << "[0] D::B1::_vptr->" << endl;
    pFun = (Fun)pVtab[0][0];
    cout << "     [0] ";    pFun(); //D::f1();
    pFun = (Fun)pVtab[0][1];
    cout << "     [1] ";    pFun(); //B1::Bf1();
    pFun = (Fun)pVtab[0][2];
    cout << "     [2] ";    pFun(); //D::Df();
    pFun = (Fun)pVtab[0][3];
    cout << "     [3] ";
    cout << pFun << endl;
 
    //cout << pVtab[4][2] << endl;
    cout << "[1] = 0x";
    cout <<  (int*)((&dd)+1) <<endl; //????
 
    cout << "[2] B1::ib1 = ";
    cout << *((int*)(&dd)+2) <<endl; //B1::ib1
    cout << "[3] B1::cb1 = ";
    cout << (char)*((int*)(&dd)+3) << endl; //B1::cb1
 
    //---------------------
    cout << "[4] D::B2::_vptr->" << endl;
    pFun = (Fun)pVtab[4][0];
    cout << "     [0] ";    pFun(); //D::f2();
    pFun = (Fun)pVtab[4][1];
    cout << "     [1] ";    pFun(); //B2::Bf2();
    pFun = (Fun)pVtab[4][2];
    cout << "     [2] ";
    cout << pFun << endl;
   
    cout << "[5] = 0x";
    cout << *((int*)(&dd)+5) << endl; // ???
 
    cout << "[6] B2::ib2 = ";
    cout << (int)*((int*)(&dd)+6) <<endl; //B2::ib2
    cout << "[7] B2::cb2 = ";
    cout << (char)*((int*)(&dd)+7) << endl; //B2::cb2
 
    cout << "[8] D::id = ";
    cout << *((int*)(&dd)+8) << endl; //D::id
    cout << "[9] D::cd = ";
    cout << (char)*((int*)(&dd)+9) << endl;//D::cd
 
    cout << "[10]  = 0x";
    cout << (int*)*((int*)(&dd)+10) << endl;
    //---------------------
    cout << "[11] D::B::_vptr->" << endl;
    pFun = (Fun)pVtab[11][0];
    cout << "     [0] ";    pFun(); //D::f();
    pFun = (Fun)pVtab[11][1];
    cout << "     [1] ";    pFun(); //B::Bf();
    pFun = (Fun)pVtab[11][2];
    cout << "     [2] ";
    cout << pFun << endl;
 
    cout << "[12] B::ib = ";
    cout << *((int*)(&dd)+12) << endl; //B::ib
    cout << "[13] B::cb = ";
    cout << (char)*((int*)(&dd)+13) <<endl;//B::cb
 
下面给出运行后的结果(分VC++ GCC 两部份)
 
 
GCC 3.4.4
VC++ 2003
[0] B1::_vptr ->
    [0] : D::f()
    [1] : D::f1()
    [2] : B1::Bf1()
    [3] : D::f2()
    [4] : D::Df()
    [5] : 1
[1] B1::ib1 : 11
[2] B1::cb1 : 1
[3] B2::_vptr ->
    [0] : D::f()
    [1] : D::f2()
    [2] : B2::Bf2()
    [3] : 0
[4] B2::ib2 : 12
[5] B2::cb2 : 2
[6] D::id : 100
[7] D::cd : D
[8] B::_vptr ->
    [0] : D::f()
    [1] : B::Bf()
    [2] : 0
[9] B::ib : 0
[10] B::cb : B
[11] NULL : 0
[0] D::B1::_vptr->
     [0] D::f1()
     [1] B1::Bf1()
     [2] D::Df()
     [3] 00000000
[1] = 0x0013FDC4  ç 该地址取值后是 -4
[2] B1::ib1 = 11
[3] B1::cb1 = 1
[4] D::B2::_vptr->
     [0] D::f2()
     [1] B2::Bf2()
     [2] 00000000
[5] = 0x4539260   ç 该地址取值后是 -4
[6] B2::ib2 = 12
[7] B2::cb2 = 2
[8] D::id = 100
[9] D::cd = D
[10]  = 0x00000000
[11] D::B::_vptr->
     [0] D::f()
     [1] B::Bf()
     [2] 00000000
[12] B::ib = 0
[13] B::cb = B
 
 
关于虚拟继承的运行结果我就不画图了(前面的作图已经让我产生了很严重的厌倦感,所以就偷个懒了,大家见谅了)
 
在上面的输出结果中,我用不同的颜色做了一些标明。我们可以看到如下的几点:
 
1) 无论是GCC 还是VC++ ,除了一些细节上的不同,其大体上的对象布局是一样的。也就是说,先是B1 (黄色),然后是B2 (绿色),接着是D (灰色),而B 这个超类(青蓝色)的实例都放在最后的位置。

2) 关于虚函数表,尤其是第一个虚表,GCC VC++ 有很重大的不一样。但仔细看下来,还是VC++ 的虚表比较清晰和有逻辑性。

3)VC++ GCC 都把B 这个超类放到了最后,而VC++ 有一个NULL 分隔符把B B1 B2 的布局分开。GCC 则没有。

4)VC++ 中的内存布局有两个地址我有些不是很明白,在其中我用红色标出了。取其内容是-4 。接道理来说,这个指针应该是指向B 类实例的内存地址(这个做法就是为了保证重复的父类只有一个实例的技术)。但取值后却不是。这点我目前还并不太清楚,还向大家请教。

5)GCC 的内存布局中在B1 B2 中则没有指向B 的指针。这点可以理解,编译器可以通过计算B1 B2 size 而得出B 的偏移量。
 
 

结束语

C++ 这门语言是一门比较复杂的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++ 里面的那些东西,需要我们去了解他后面的内存对象。这样我们才能真正的了解C++ ,从而能够更好的使用C++ 这门最难的编程语言。
 
在文章束之前还是介绍一下自己吧。我从事软件研发有十个年头了,目前是软件开发技术主管,技术方面,主攻Unix/C/C++ ,比较喜欢网络上的技术,比如分布式计算,网格计算,P2P Ajax 等一切和互联网相关的东西。管理方面比较擅长于团队建设,技术趋势分析,项目管理。欢迎大家和我交流,我的MSN Email 是: [email protected]  

你可能感兴趣的:(C++,对象,职场,休闲,内存布局)