控制Hive MAP个数详解

HiveMAP数或者说MAPREDUCEMAP数是由谁来决定的呢?inputsplit size,那么对于每一个inputsplit size是如何计算出来的,这是做MAP数调整的关键.

HADOOP给出了Inputformat接口用于描述输入数据的格式,其中一个关键的方法就是getSplits,对输入的数据进行分片.

HiveInputFormat进行了封装:

213505502.png

而具体采用的实现是由参数hive.input.format来决定的,主要使用2中类型HiveInputFormatCombineHiveInputFormat.

对于HiveInputFormat来说:

public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
    //扫描每一个分区
    for (Path dir : dirs) {
      PartitionDesc part = getPartitionDescFromPath(pathToPartitionInfo, dir);
    //获取分区的输入格式
      Class inputFormatClass = part.getInputFileFormatClass();
      InputFormat inputFormat = getInputFormatFromCache(inputFormatClass, job);
    //按照相应格式的分片算法获取分片
    //注意:这里的Inputformat只是old version API:org.apache.hadoop.mapred而不是org.apache.hadoop.mapreduce,因此不能采用新的API,否则在查询时会报异常:Input format must implement InputFormat.区别就是新的API的计算inputsplit size(Math.max(minSize, Math.min(maxSize, blockSize))和老的(Math.max(minSize, Math.min(goalSize, blockSize)))不一样;
      InputSplit[] iss = inputFormat.getSplits(newjob, numSplits / dirs.length);
      for (InputSplit is : iss) {
    //封装结果,返回
        result.add(new HiveInputSplit(is, inputFormatClass.getName()));
      }
    }
    return result.toArray(new HiveInputSplit[result.size()]);
}


对于CombineHiveInputFormat来说的计算就比较复杂了:

public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
    //加载CombineFileInputFormatShim,这个类继承了org.apache.hadoop.mapred.lib.CombineFileInputFormat
    CombineFileInputFormatShim combine = ShimLoader.getHadoopShims()
        .getCombineFileInputFormat();
if (combine == null) {
//若为空则采用HiveInputFormat的方式,下同
      return super.getSplits(job, numSplits);
    }
    Path[] paths = combine.getInputPathsShim(job);
for (Path path : paths) {
//若是外部表,则按照HiveInputFormat方式分片
      if ((tableDesc != null) && tableDesc.isNonNative()) {
        return super.getSplits(job, numSplits);
      }
      Class inputFormatClass = part.getInputFileFormatClass();
      String inputFormatClassName = inputFormatClass.getName();
      InputFormat inputFormat = getInputFormatFromCache(inputFormatClass, job);
      if (this.mrwork != null && !this.mrwork.getHadoopSupportsSplittable()) {
        if (inputFormat instanceof TextInputFormat) {
         if ((new CompressionCodecFactory(job)).getCodec(path) != null)
//在未开启hive.hadoop.supports.splittable.combineinputformat(MAPREDUCE-1597)参数情况下,对于TextInputFormat并且为压缩则采用HiveInputFormat分片算法
                    return super.getSplits(job, numSplits);
        }
      }
    //对于连接式同上
      if (inputFormat instanceof SymlinkTextInputFormat) {
        return super.getSplits(job, numSplits);
      }
      CombineFilter f = null;
      boolean done = false;
Path filterPath = path;
//由参数hive.mapper.cannot.span.multiple.partitions控制,默认false;如果没true,则对每一个partition创建一个pool,以下省略为true的处理;对于同一个表的同一个文件格式的split创建一个pool为combine做准备;
      if (!mrwork.isMapperCannotSpanPartns()) {
        opList = HiveFileFormatUtils.doGetWorksFromPath(
                   pathToAliases, aliasToWork, filterPath);
        f = poolMap.get(new CombinePathInputFormat(opList, inputFormatClassName));
      }
      if (!done) {
        if (f == null) {
          f = new CombineFilter(filterPath);
          combine.createPool(job, f);
        } else {
          f.addPath(filterPath);
        }
      }
    }
if (!mrwork.isMapperCannotSpanPartns()) {
//到这里才调用combine的分片算法,继承了org.apache.hadoop.mapred.lib.CombineFileInputFormat extends 新版本CombineFileInputformat
      iss = Arrays.asList(combine.getSplits(job, 1));
}
//对于sample查询特殊处理
    if (mrwork.getNameToSplitSample() != null && !mrwork.getNameToSplitSample().isEmpty()) {
      iss = sampleSplits(iss);
}
//封装结果返回
    for (InputSplitShim is : iss) {
      CombineHiveInputSplit csplit = new CombineHiveInputSplit(job, is);
      result.add(csplit);
    }
    return result.toArray(new CombineHiveInputSplit[result.size()]);
  }

具体combinegetSplits算法如下:

public List<InputSplit> getSplits(JobContext job)
    throws IOException {
        //决定切分的几个参数
    if (minSplitSizeNode != 0) {
      minSizeNode = minSplitSizeNode;
    } else {
      minSizeNode = conf.getLong(SPLIT_MINSIZE_PERNODE, 0);
    }
    if (minSplitSizeRack != 0) {
      minSizeRack = minSplitSizeRack;
    } else {
      minSizeRack = conf.getLong(SPLIT_MINSIZE_PERRACK, 0);
    }
    if (maxSplitSize != 0) {
      maxSize = maxSplitSize;
    } else {
      maxSize= = conf.getLong("mapreduce.input.fileinputformat.split.maxsize", 0);
    }
        for (MultiPathFilter onepool : pools) {
      ArrayList<Path> myPaths = new ArrayList<Path>();
      // create splits for all files in this pool.
      getMoreSplits(job, myPaths.toArray(new Path[myPaths.size()]),
                    maxSize, minSizeNode, minSizeRack, splits);
    }
}

跳到getMoreSplits:主要是填充如下数据结构,

// all blocks for all the files in input set
    OneFileInfo[] files;
    // mapping from a rack name to the list of blocks it has
    HashMap<String, List<OneBlockInfo>> rackToBlocks = new HashMap<String, List<OneBlockInfo>>();
    // mapping from a block to the nodes on which it has replicas
    HashMap<OneBlockInfo, String[]> blockToNodes = new HashMap<OneBlockInfo, String[]>();
    // mapping from a node to the list of blocks that it contains
    HashMap<String, List<OneBlockInfo>> nodeToBlocks = new HashMap<String, List<OneBlockInfo>>();


大概流程则是(这里blockInfo生成略过不表,可以参考MAPREDUCE-2046):

1.首先处理每个DatanodeblockInfo,先按照>=maxsplitsize来切分split,剩余的再按照blockinfo>=minSplitSizeNode切分,其余的等和rack的其余blockinfo进行合并

2.其次对每个Rack进行处理:先按照>=maxsplitsize来切分split,剩余的再按照blockinfo>=minSplitSizeRack切分,其余的等和overflow的其余blockinfo进行合并

3.对于overflow blockInfo直接根据maxsplitsize来进行切分.

其余影响MAP数的参数比较好理解了:

1.影响在MAPREDUCE后是否会启动MAP进行文件合并

hive.merge.mapfiles,hive.merge.mapredfiles,hive.merge.size.per.task(default=256 * 1000 * 1000),hive.merge.smallfiles.avgsize(default=16 * 1000 * 1000)

2.影响是否存在skew开启多MAP:

hive.groupby.skewindata=false:

当该参数有true时会生成2个MR:

第一个MR的分区键是grouping key+distinct key,通过hash分配到reduce进行第一次聚合操作

第二个MR的分区键则是grouping key进行第二次聚合;(2个MR的sort key都是grouping key+distinct key)

https://issues.apache.org/jira/browse/HIVE-5118

hive.optimize.skewjoin=false

hive.optimize.skewjoin.compiletime=false

hive.skewjoin.key=100000

hive.skewjoin.mapjoin.map.tasks=10000

hive.skewjoin.mapjoin.min.split=33554432

3.mapreduce参数,是否开启map speculative

4.bucket table.

对于MAP/REDUCE的性能分析放到下一篇再说吧




你可能感兴趣的:(hive,map)