- DeepSeek:揭秘支持的AI模型与算法全览
鸭鸭鸭进京赶烤
人工智能机器人agiaiopencv算法计算机网络
以下是一些常见的AI模型和算法类型,DeepSeek可能支持的内容:1.自然语言处理(NLP)文本分类:用于情感分析、垃圾邮件检测等。命名实体识别(NER):从文本中提取人名、地点、组织等信息。机器翻译:支持多语言之间的自动翻译。文本生成:如GPT系列模型,用于生成文章、对话等。问答系统:基于BERT等模型的智能问答。语义相似度计算:判断两段文本的语义是否相似。2.计算机视觉(CV)图像分类:识别
- 【推荐系统】由浅入深
HP-Succinum
机器学习算法机器学习人工智能
目录一、相似度计算方法1.杰卡德系数2.余弦相似度3.编辑距离二、推荐系统算法1.基于内容的推荐系统2.协同过滤推荐系统三、冷启动问题与数据稀疏性问题1.冷启动问题2.数据稀疏性问题四、数据预处理的重要性五、结论在互联网时代,推荐系统已经成为各大平台提升用户体验和增加用户粘性的重要工具。无论是电商平台的商品推荐,还是视频平台的内容推荐,其核心思想都是通过计算对象之间的相似度,为用户提供个性化的推荐
- 【CSP】202403-2 相似度计算
zhoushanguhe
CSP算法数据结构c++c语言
2024年第33次CCF计算机软件能力认证202403-2相似度计算原题链接:相似度计算时间限制:1.0秒空间限制:512MiB题目背景两个集合的Jaccard相似度定义为:(,)=∣∩∣/∣∪∣即交集的大小除以并集的大小。当集合和完全相同时,(,)=1取得最大值;当二者交集为空时,(,)=0取得最小值。题目描述除了进行简单的词频统计,小P还希望使用Jaccard相似度来评估两篇文章的相似性。具体
- 相似度计算 ccf-csp 2024-2-2
ahahahahaha2333
ccf-csp(算法)算法c++数据结构
#includeusingnamespacestd;intmain(){//定义两个变量n和m,分别用于存储两篇文章的单词个数intn,m;//从标准输入读取n和m的值cin>>n>>m;//定义三个map容器,A用于存储并集,T用于标记第一篇文章中的单词,B用于存储交集mapA,T,B;//循环读取第一篇文章的n个单词for(inti=0;i>t;//遍历单词t的每个字符for(intj=0;j
- HarmonyOS NEXT AI基础视觉服务-人脸对比
harmonyos-next
案例描述这是一个基于AI基础视觉服务实现的人脸对比案例,通过调用设备相册选择两张图片进行人脸特征比对,并展示相似度计算结果。实现步骤:1.模块导入//导入功能模块import{photoAccessHelper}from'@kit.MediaLibraryKit';import{fileIo}from'@kit.CoreFileKit';import{image}from'@kit.ImageKi
- Milvus向量数据库安装与使用
何宜秋
milvus人工智能深度学习数据库
向量数据库是一种专门应对向量数据存储和处理的数据库系统,它以向量为基本数据类型,将向量作为数据存储的基本单元。这种数据库系统采用高维索引技术,通过多级索引结构将向量空间划分为多个超平面,实现对大规模高维向量数据的迅速定位和访问。向量数据库支持相似性查询,能够快速查找最接近给定向量的数据,通过计算余弦相似度或欧氏距离等度量,实现对向量相似性的有效评估。此外,向量数据库还支持向量聚合操作,可将多个向量
- Coggle数据科学 | 小白学 RAG:Milvus 介绍与使用教程
双木的木
深度学习拓展阅读milvus算法深度学习人工智能nlp数据库机器学习
本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。原文链接:小白学RAG:Milvus介绍与使用教程什么是Milvus?Milvus是一款高性能、高扩展性的开源向量数据库,专为处理海量向量数据的实时召回而设计。它基于FAISS、Annoy、HNSW等向量搜索库构建,核心功能是解决稠密向量相似度检索的问题。Milvus不仅支持基本的向量检索,还提供数据分区分片、数据持久化、增
- 动态规划——编辑距离
皮蛋瘦肉没有肉
经典算法动态规划算法
参考博客:https://blog.csdn.net/ghsau/article/details/78903076题目编辑距离又称Leveinshtein距离,是由俄罗斯科学家VladimirLevenshtein在1965年提出。编辑距离是计算两个文本相似度的算法之一,以字符串为例,字符串a和字符串b的编辑距离是将a转换成b的最小操作次数,这里的操作包括三种:插入一个字符删除一个字符替换一个字符
- 向量数据库的适用场景与局限性分析
CoreFMEA软件
技术算法数据库向量数据库
一、核心适用场景1.多模态内容检索电商智能搜索:支持“以图搜图”“以文搜图”,例如用户上传一张碎花裙照片,系统可精准匹配相似款式商品,同时结合文本描述(如“雪纺材质”“夏季新款”)进行过滤,提升搜索效率。阿里云向量检索服务(VRS)在某电商平台实现亿级商品图片毫秒级检索,点击率提升35%。医疗影像分析:存储CT、MRI等医学影像的向量特征,支持病灶相似度匹配。例如,输入肺部结节影像,系统可快速检索
- 中文语义相似度检测AI模型实践
墨雪遗痕
AI实践人工智能
个人博客原文地址上方模型若是未能加载出来,点击这里主动跳转语义相似度输入两句中文,判断是否意思相同大概细节数据集LCQMC是一个公开的中文问句匹配数据集,由哈尔滨工业大学(HIT)的研究团队创建,最初发布于2018年。它旨在研究如何判断两个中文问句是否具有相似的语义。微调模型simcse-chinese-roberta-wwm-ext是一个基于SimCSE(SimpleContrastiveSen
- 2小样本学习(Few-Shot)之相似度
wuxuand
时序分类小样本学习FewShot
目录小样本学习的基本思路:具体实现方法:小样本学习的基本思路:学习一个相似度函数similarityfunction:sim(x,x')两个样本越相近,相似度越高。比如:
- 一个AI小白如何理解近似匹配检索
xieyu_zy
相似性匹配向量检索AI算法
在AI领域的相似性匹配中通常会接触很多新名词:ANN、KNN、HNSW、SQ8、Faiss、L2、L1、innerproduct...你可能会查了很多官方解释,但是:-->网上每个名词都告诉了是什么,我知道了他是什么,对,没错,我还是不知道它是什么-->根据用户手册,我Stepbystep成功完成了所有的实验,我依然不知道我在实验什么-->有业务场景讲解,与向量搜索/相似度匹配的关系是什么,没错,
- 图像检索Matlab程序
985计算机硕士
图形处理matlab开发语言
图像检索Matlab程序读取待检索图片,在图片库里进行检索,可以计算相似度,使用Hu不变矩算法,实现图像检索技术。文章目录1.程序流程2.核心代码3.功能说明4.注意事项5.运行程序以下是一个基于MATLAB的图像检索程序示例,使用Hu不变矩算法计算图像相似度。该程序可以读取待检索图片,并在图片库中进行检索,返回相似度最高的图片。1.程序流程读取待检索图片:用户选择一张待检索的图片。加载图片库:从
- Milvus 中常见相似度度量方法
Sirius Wu
milvus机器学习算法
在Milvus中,相似度度量方法用于衡量向量之间的相似程度,不同的度量方法有不同的特点、优缺点和适用场景。以下是对Milvus中常见相似度度量方法的详细介绍以及对应的search参数示例。1.欧氏距离(L2Distance,L2)特点欧氏距离是最常用的距离度量方法之一,它计算的是两个向量在欧几里得空间中的直线距离。对于两个nnn维向量x⃗=(x1,x2,⋯ ,xn)\vec{x}=(x_1,x_2
- Milvus学习整理
louisliao_1981
milvus学习
Milvus学习整理一、度量类型(metric_type)二、向量字段和适用场景介绍三、索引字段介绍(一)、概述总结(二)、详细说明四、简单代码示例(一)、建立集合和索引示例(二)、搜索示例(三)、参考文档五、数据搜索(一)、基础搜索参数说明(二)、范围搜索1.概述总结2.详细说明(三)、全文搜索(BM25)1.概述2.使用全文搜索步骤(四)、其他搜索一、度量类型(metric_type)相似度量
- 搜广推校招面经五十五
Y1nhl
搜广推面经深度学习机器学习python推荐算法搜索算法广告算法人工智能
腾讯搜推面经一、双塔模型有什么缺点双塔模型(Two-TowerModel)是一种常见的推荐系统或检索系统架构,尤其在处理大规模用户-物品交互数据时表现出色。1.1.特征交互受限问题:双塔模型将用户特征和物品特征分别编码为两个独立的向量(用户塔和物品塔),然后在顶层通过简单的点积或余弦相似度计算得分。这种设计限制了用户特征和物品特征之间的细粒度交互。影响:无法捕捉复杂的特征交叉信息,可能导致模型性能
- 向量检索、检索增强生成(RAG)、大语言模型及相关系统架构——典型面试问题及简要答案
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)语言模型系统架构面试
1.什么是向量检索?它与传统基于关键字的检索相比有什么不同?答案要点:向量检索是将文本、图像、音频等数据映射为向量,在高维向量空间中基于相似度或距离进行搜索。与传统基于关键字的检索(如倒排索引)相比,向量检索更关注“语义”或“特征”,能找出语义上相似但未必包含相同关键词的内容。向量检索非常适合多模态场景(例如“以图搜图”)或自然语言问答(同义词、上下文关联等)。2.什么是检索增强生成(RAG)?核
- 理解并使用基于n-gram重叠的示例选择器
shuoac
easyui前端javascriptpython
在AI及自然语言处理任务中,选择与输入最相似的示例可以显著提升生成的质量和上下文相关性。本文将介绍如何使用NGramOverlapExampleSelector工具,通过n-gram重叠来筛选和排序示例,从而帮助实现这一目标。技术背景介绍n-gram重叠技术通过比较输入文本与示例文本在字符或词组上的相似度,计算一个介于0到1之间的分数来表示相似度。这个分数越高,表示文本间的重叠越大。NGramOv
- 蓝桥杯新手算法练习题单|冲击国一(三)
小咖拉眯
蓝桥杯蓝桥杯java数据结构算法dfsbfs
此题单为算法基础精选题单,包含蓝桥杯常考考点以及各种经典算法,可以帮助你打牢基础,查漏补缺。本题单目标是冲击蓝桥杯省一国一,团体程序天梯赛个人国三、XCPC区域赛铜/银奖前言本次题单重点关注模拟类问题,DFS问题,BFS问题目录模拟类题型一、最大子矩阵二、世纪末的星期三、图像相似度四、操作系统DFS题型五、老子的全排列呢六、皇后问题七、池塘BFS题型八、迷宫九、八数码问题十、字符变换一、最大子矩阵
- 数据挖掘导论——第七章:聚类
Wis4e
数据挖掘聚类人工智能
什么是聚类?数据间的相似性和距离的测量方式有哪些?数据标准化如何进行距离计算?层次聚类的思想和流程?K-均值聚类的思想和流程?距离的计算方式如何影响聚类结果?聚类的要素,包括数据,差异性/相似性测量方式,聚类算法(标准化执行程序或流程)理解相似性和差异性的度量(p40)。Jaccard和余弦相似性度量。以下内容由AI生成:余弦相似度(CosineSimilarity)是一种衡量两个向量在方向上相似
- 《数据挖掘导论》 第二章数据
爱吃草莓的西瓜酱
数据挖掘导论数据挖掘
第二章数据数据类型数据质量数据预处理相似度测量数据Collectionofdataobjectsandtheirattributes特征值数值型的或者描述性的(男/女-->0/1)特征和特征值之间的区别:相同的属性可能被赋予不同的特征值,如身高的单位可能是米或者英尺不同的属性可以映射到相同的值集,如ID是无界的,age有最大值和最小值1.特征的类型Nominal(标称)Examples:IDnum
- 论文中自己写的内容会被标红吗?
kexiaoya2013
人工智能论文阅读论文笔记
很多人在写论文时,会担心一个问题,如果内容完全是自己写的,查重时会不会被系统标红?一、查重系统工作原理查重系统的核心功能是比对文本相似度。它会将你的论文与数据库中的海量文献进行对比,找出重复或高度相似的片段。要注意的是,查重系统并不会区分内容是谁写的,它只能关注文字本身的重复率。即使某段话是你原创的,但如果数据库中存在相似的表达,系统依然会判定为重复。二、为什么自己写的内容也可能被标红1、常用术语
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- 使用Couchbase中的向量搜索进行智能查询
eahba
python
技术背景介绍Couchbase是一种强大的分布式NoSQL数据库,广泛应用于云、移动、AI和边缘计算应用中。其向量搜索功能,作为全文搜索服务的一部分,支持在应用中进行高效的语义查询。这为开发者在实现AI驱动的应用时提供了极大的便利。核心原理解析Couchbase的向量搜索利用向量嵌入技术对文本进行处理,可以实现基于语义相似度的查询。这与传统的关键词匹配有根本的不同,更适合AI应用场景中模糊或语义相
- 聚类分析|k-means聚类方法及其Python实现
皖山文武
数据挖掘商务智能kmeans聚类python数据挖掘机器学习
k-means聚类方法及其Python实现0.k-means算法简介1.k-means算法工作原理2.k-means算法流程3.k–means算法的Python实现0.k-means算法简介k-means算法由MacQueen在1967年提出。是一种经典的基于划分的聚类方法。划分方法(PartitioningMethod)是基于距离判断样本相似度,通过不断迭代将含有多个样本的数据集划分成若干个簇,
- 向量数据库简介
openwin_top
python编程示例系列python编程示例系列二数据库
向量数据库(VectorDatabase)是一种专门用于存储和查询向量数据的数据库系统。向量数据库通常使用高效的向量索引技术,支持基于向量相似度的查询和检索,可以应用于图像搜索、自然语言处理、推荐系统、机器学习等领域。与传统的关系型数据库不同,向量数据库通常使用基于向量的数据模型,将向量作为数据的核心表示形式。向量数据库可以存储和处理大量的向量数据,支持高效的向量相似度计算和查询。常见的向量索引技
- PTA L2-005 集合相似度
名字在哪啊
天梯刷题PTAL2-005集合相似度
题目给定两个整数集合,它们的相似度定义为:Nc/Nt×100%。其中Nc是两个集合都有的不相等整数的个数,Nt是两个集合一共有的不相等整数的个数。你的任务就是计算任意一对给定集合的相似度。输入格式:输入第一行给出一个正整数N(≤50),是集合的个数。随后N行,每行对应一个集合。每个集合首先给出一个正整数M(≤104),是集合中元素的个数;然后跟M个[0,109]区间内的整数。之后一行给出一个正整数
- 毕业论文查重六大误区,你踩坑了吗?
kexiaoya2013
论文笔记论文阅读
又到毕业季了,论文查重也成了无数同学的一块心病。有人熬夜改稿到崩溃,有人查重报告看懵圈,其实,很多焦虑都源于对查重的误解!那么,今天我们就来扒一扒那些年你踩过的查重坑,看完这篇保你少走弯路!误区一:认为重复率低就绝对安全查重系统本质上就是一个算法程序,它只能机械的比对文字相似度,根本看不懂你论文的学术价值。所以除了重复率符合学校标准外,同时还要确保内容的原创性和逻辑性合理。误区二:只用一个查重软件
- iOS:如何使用OpenVC库计算照片相似度
zzialx
ioscocoamacos
图像格式转换使用UIImage到cv::Mat的转换时,注意通道顺序(iOS使用BGRA格式)。性能优化对于移动端,可降低HOG参数复杂度(如减少方向数)。使用@autoreleasepool管理内存。动态阈值建议根据实际数据集通过ROC曲线确定最佳阈值。错误处理增加对空图像、无轮廓等异常情况的检查。**关键步骤:**1.引入OpenCV库2.涉及C++,需要将.m文件更新为.mm文件#pragm
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro