Hibernate 性能优化技巧

 在处理大数据量时,会有大量的数据缓冲保存在Session的一级缓存中,这缓存大太时会严重显示性能,所以在使用Hibernate处理大数据量的,可以使用session.clear()或者session. Evict(Object) 在处理过程中,清除全部的缓存或者清除某个对象。


2) 
对大数据量查询时,慎用 list() 或者 iterator() 返回查询结果,
1. 
使用 List() 返回结果时, Hibernate 会所有查询结果初始化为持久化对象,结果集较大时,会占用很多的处理时间。
2. 
而使用 iterator() 返回结果时,在每次调用 iterator.next() 返回对象并使用对象时, Hibernate 才调用查询将对应的对象初始化,对于大数据量时,每调用一次查询都会花费较多的时间。当结果集较大,但是含有较大量相同的数据,或者结果集不是全部都会使用时,使用 iterator() 才有优势。
3. 
对于大数据量,使用 qry.scroll() 可以得到较好的处理速度以及性能。而且直接对结果集向前向后滚动。

3) 
对于关联操作,Hibernate虽然可以表达复杂的数据关系,但请慎用,使数据关系较为简单时会得到较好的效率,特别是较深层次的关联时,性能会很差。

4) 
对含有关联的 PO (持久化对象)时,若 default-cascade="all" 或者  “save-update” ,新增 PO 时,请注意对 PO 中的集合的赋值操作,因为有可能使得多执行一次 update 操作。

5) 
在一对多、多对一的关系中,使用延迟加载机制,会使不少的对象在使用时 会初始化,这样可使得节省内存空间以及减少数据库的负荷,而且若 PO 中的集合没有被使用时,就可减少互数据库的交互从而减少处理时间。

6)  对于大数据量新增、修改、删除操作或者是对大数据量的查询,与数据库的交互次数是决定处理时间的最重要因素,减少交互的次数是提升效率的最好途径,所以在开发过程中,请将 show_sql 设置为 true ,深入了解 Hibernate 的处理过程,尝试不同的方式,可以使得效率提升。

7) Hibernate 是以 JDBC 为基础,但是 Hibernate 是对 JDBC 的优化,其中使用 Hibernate 的缓冲机制会使性能提升,如使用二级缓存以及查询缓存,若命中率较高明,性能会是到大幅提升。

8) Hibernate 可以通过设置 hibernate.jdbc.fetch_size hibernate.jdbc.batch_size 等属性,对 Hibernate 进行优化。
 
9)  不过值得注意的是,一些数据库提供的主键生成机制在效率上未必最佳,大量并发 insert 数据时可能会引起表之间的互锁。数据库提供的主键生成机制,往往是通过在一个内部表中保存当前主键状态(如对于自增型主键而言,此内部表中就维护着当前的最大值和递增量),之后每次插入数据会读取这个最大值,然后加上递增量作为新记录的主键,之后再把这个新的最大值更新回内部表中,这样,一次 Insert 操作可能导致数据库内部多次表读写操作,同时伴随的还有数据的加锁解锁操作,这对性能产生了较大影响。
因此,对于并发 Insert 要求较高的系统,推荐采用 uuid.hex  作为主键生成机制。
 
10)  Dynamic Update  如果选定,则生成 Update SQL  时不包含未发生变动的字段属性,这样可以在一定程度上提升 SQL 执行效能 . Dynamic Insert  如果选定,则生成 Insert SQL  时不包含未发生变动的字段属性,这样可以在一定程度上提升 SQL 执行效能
 
11) 在编写代码的时候请,对将 POJO getter/setter 方法设定为 public ,如果设定为 private Hibernate 将无法对属性的存取进行优化,只能转而采用传统的反射机制进行操作,这将导致大量的性能开销(特别是在 1.4 之前的 Sun JDK 版本以及 IBM JDK 中,反射所带来的系统开销相当可观)。
 
12) one-to-many  关系中,将 many  一方设为主动方( inverse=false )将有助性能的改善
 
13)  由于多对多关联的性能不佳(由于引入了中间表,一次读取操作需要反复数次查询),因此在设计中应该避免大量使用 .
 
14)  Hibernate 支持两种锁机制:即通常所说的“悲观锁( Pessimistic Locking )”和“乐观锁( Optimistic Locking )”。 悲观锁带来 数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。乐观锁机制在一定程度上解决了这个问题.乐观锁机制避免了长事务中的数据库加锁开销,大大提升了大并发量下的系统整体性能表现。

你可能感兴趣的:(Hibernate,职场,技巧,性能优化,休闲)