转载地址:http://blog.csdn.net/mr_raptor/article/details/6556415
由semihosting知识可知,semihosting只是将目标系统中的IO请求交给了调试环境来处理,但是在嵌入式系统实际应用中,往往嵌入式系统和主机调试环境是独立的,而嵌入式系统又想使用标准输入输出中的库函数,这时就要使用硬件重定向技术。
应用程序中对外设的IO请求实际是对低层最基本IO硬件的封装,例如printf()函数,其实是对将数据写入到显示器相应寄存器的抽象封装,用户不用关心具体使用了什么硬件机制,也不用关心具体怎么将其打印到屏幕上。在ADS开发环境中,semihosting低层也进行了封装。在嵌入式应用系统中,常常需要重新实现一些低级的IO功能,以适应目标系统的具体情况。像这种将底层IO由其它硬件来实现的重定向机制叫做硬件重定向。如图3-15所示。
Semihosting支持 |
图3-15底层IO重定向
Semihosting将底层基本IO函数进行了封装,默认的semihosting模式下,底层基本IO都是针对显示器,键盘等硬件进行了封装,实现了对显示器,键盘输入等硬件的驱动,IO操作等。用户可以自己定义底层的基本IO函数,来实现目标开发板上IO硬件的驱动和IO操作,并且告之连接器,在连接程序时连接用户自己定义底层基本IO函数,而不是默认的调试环境下的底层基本IO函数。这样目标开发板运行应用程序中的IO操作就被重新定向到了自己的硬件上了。例如:标准输出函数printf()的底层基本IO函数是fputc(),它是向硬件里写入一个字符函数,用户自己将该函数重写,在fputc()里面实现向UART串口打印字符,而不是打印到标准输出显示器上。这样一来, printf()系列函数的输出都被重定向到UART串口上去了。
实现硬件重定向时有以下几点需要注意:
(1) 声明不使用semihosting SWI来请求host主机IO操作,而是使用自定义IO操作
(2) 驱动重定向硬件设备
(3) 重写低级IO函数
该程序文件主要用于启动处理,声明不使用semihosting SWI来请求host主机IO操作,关闭看门狗,初始化内存,最后跳入到main函数中执行。由于程序本身实现了reg_init_no_pll.txt脚本文件的功能,因此本实验不需要加载初始化脚本。
AREA Init, CODE, READONLY
; 确保不使用系统C库中的底层IO函数接口,而是使用用户自己定义IO接口
IMPORT __use_no_semihosting_swi
ENTRY
EXPORT Reset_Handler
Reset_Handler
; 关闭看门狗
ldr r0, = 0x53000000
mov r1, #0
str r1, [r0]
bl initmem
IMPORT __main
B __main ; 使用B指令跳入main,而不使用BL指令,因为不需要返回
initmem
ldr r0, =0x48000000
ldr r1, =0x48000034
adr r2, memdata
initmemloop
ldr r3, [r2], #4
str r3, [r0], #4
teq r0, r1
bne initmemloop
mov pc,lr
memdata
DCD 0x22111110 ;BWSCON
DCD 0x00000700 ;BANKCON0
DCD 0x00000700 ;BANKCON1
DCD 0x00000700 ;BANKCON2
DCD 0x00000700 ;BANKCON3
DCD 0x00000700 ;BANKCON4
DCD 0x00000700 ;BANKCON5
DCD 0x00018005 ;BANKCON6
DCD 0x00018005 ;BANKCON7
DCD 0x008e07a3 ;REFRESH
DCD 0x000000b1 ;BANKSIZE
DCD 0x00000030 ;MRSRB6
DCD 0x00000030 ;MRSRB7
END
serial.c:
该程序文件主要实现了对UART串口的驱动和基本IO操作。由于IO请求硬件重定向最终要实现数据的输出和输入,通过读取UART串口寄存器读取串口数据取得用户输入信息,通过写入UART串口寄存器实现数据输出操作。
#include "s3c2410.h"
#define TXD0READY (1<<2)
#define RXD0READY (1)
void init_serial_A( )
{
//初始化UART
GPHCON |= 0xa0; //GPH2,GPH3 used as TXD0,RXD0
GPHUP = 0x0c; //GPH2,GPH3内部上拉
ULCON0 = 0x03; //8N1
UCON0 = 0x05; //查询方式
UFCON0 = 0x00; //不使用FIFO
UMCON0 = 0x00; //不使用流控
UBRDIV0 = 12; //波特率为57600
}
/* 通过串口字符发送函数 */
void sendchar2(char c)
{
while( ! (UTRSTAT0 & TXD0READY) );
UTXH0 = c;
}
/* 通过串口字符接收函数 */
char recvchar( )
{
while( ! (UTRSTAT0 & RXD0READY) );
return URXH0;
}
retarget.c:
本程序文件主要重新实现了底层IO的基本函数:
(1)int fgetc(FILE *f): 从文件描述符f中取得单个字符输入,scanf的底层实现函数,在C语言中所有的设备都被抽象成一个可以读写的文件,f参数就是具体IO设备,如stdout标准输出指显示器,stdin标准输入指键盘,由于本实验用串口重定向了标准输入,因此fgetc的功能主要返回从串口取得一个字符。
(2) int fputc(int ch, FILE *f):向文件描述符f里写入一个字符ch,它是printf的底层实现函数,本实验是用串口重定向标准输出,因此fputc的功能主要是向串口里写入字符ch。
(3)int ferror(FILE *f):标准错误的底层实现函数,本实验直接返回EOF,没有实现具体功能。
(4)void _ttywrch(int ch): 终端数据输出的底层实现,本实验里用串口实现其功能,同样是向串口里写入字符ch。
(5)void _sys_exit(int return_code):系统退出的底层实现,这儿直接是用死循环来模拟最后程序的退出。
由于底层IO操作实现被重定向,基于这些底层IO的库也没有被引入,__FILE,__stdout,__stdin这些使用的结构体和变量就需要自己重新定义。其中__FILE就是FILE文件描述符。__stdout是标准输出文件描述符,__stdin是标准输入文件描述符。
#include <stdio.h>
extern void sendchar2( char ch );
extern char recvchar(void);
struct __FILE { int handle; };
FILE __stdout;
FILE __stdin;
/* 底层IO函数,从串口取得一个字符 */
int fgetc(FILE *f)
{
char ch;
ch = recvchar();
if ((ch == '/r') || (ch == '/n')) // 接收到返回行首符与换行符时实现换行显示
{
fputc('/n', NULL);
fputc('/r', NULL);
}
fputc(ch, NULL);
return ch;
}
/* 底层IO函数,打印一个字符,将字符打印到串口 */
int fputc(int ch, FILE *f)
{
char tempch = ch;
if (ch == '/n') // 发送换行符时,先发送返回行首符号/r,再发送换行符
sendchar2('/r');
sendchar2(tempch);
return ch;
}
/* 底层IO函数 */
int ferror(FILE *f)
{
return EOF;
}
/* 底层IO函数,终端打印函数 */
void _ttywrch(int ch)
{
char tempch = ch;
sendchar2( tempch );
}
/* 底层IO函数,程序退出处理函数 */
void _sys_exit(int return_code)
{
label: goto label;
}
main.c:
本程序文件主要调用串口驱动程序,驱动串口,驱动LED,获得用户输入点亮对应LED灯。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
extern void init_serial_A(void);
#define GPBCON (*(volatile unsigned long *)0x56000010)
#define GPBDAT (*(volatile unsigned long *)0x56000014)
#define LEDS (1<<5|1<<6|1<<7|1<<8)
int main(void)
{
int a,b;
int i;
float c,d;
void *p1, *p2;
#pragma import(__use_no_semihosting_swi) // 不使用软件中断响应semihosting请求
init_serial_A();
GPBCON = 0x00015400;
while (1)
{
printf("please input led number: ");
scanf("%d", &i);
switch (i)
{
case 1:
GPBDAT=(GPBDAT&(~LEDS)) | (1<<6|1<<7|1<<8);
printf("led1 on /n");
break;
case 2:
GPBDAT=(GPBDAT&(~LEDS)) | (1<<5|1<<7|1<<8);
printf("led2 on /n");
break;
case 3:
GPBDAT=(GPBDAT&(~LEDS)) | (1<<5|1<<6|1<<8);
printf("led3 on /n");
break;
case 4:
GPBDAT=(GPBDAT&(~LEDS)) | (1<<5|1<<6|1<<7);
printf("led4 on/n");
break;
default:
printf("input error, please input 1 to 4/n");
break;
}
}
return 0;
}