Ethernet Switch是如何工作的?
http://blog.sina.com.cn/s/blog_5f70c7060100jyj1.html
Ethernet Switch的工作基础是Ethernet信息包结构。Ethernet信息包为固定格式,但长度可变,在信息包头中带有目的MAC地址、源MAC地址、信息长度等若干内容。目前使用较多的Ethernet交换机都是Layer 2(OSI的第二层)交换机,即基于Ethernet MAC地址进行交换。
Ethernet Switch控制电路收到一个Ethernet 包(从某一端口)后,立即查找其内存中的地址对照表(MAC端口号),以确认该目的MAC的NIC挂在哪一个端口上,然后将该包送到该端口上,如果该目的MAC地址是首次出现,则广播到所有端口。Ethernet 交换机是根据Ethernet包中的源MAC地址来更新“MAC地址―端口号表”的,每一台计算机打开后,其上面的NIC会定期发出空闲包或信号,Ethernet 交换机可据此得知其存在及MAC地址,所谓自动地址学习就是指此意;所谓自动年龄更新(Auto-aging),指的是若一定时间内未见已出现的MAC地址发出包,则将此MAC地址从“MAC―端口号表”中清除,此MAC地址重新出现时将会被当作新地址处理。
Ethernet Switch与Ethernet HUB的最大差别是Ethernet Switch记忆什么用户(即哪些MAC地址)挂在哪一个端口上,也就是说Switch中有一个地址表,表中的每一项内容主要是MAC地址与端口号。当Switch从某一端口收到一个包时(我们暂不讨论广播包),它要对地址表执行两个动作:一是检查该包的源MAC地址是否已在地址表中,如果没有,则将该MAC地址加到地址表中,这样以后就知道该MAC地址在哪一个端口;二是检查该包的目的MAC地址是否已在地址表中,如果该MAC地址已在地址表中,则将该包发送到对应的端口即可,如果该MAC地址不在地址表中,则将该包发送到所有其它端口(源端口除外),相当于该包是一个广播包。
对于广播包,Ethernet Switch与Ethernet HUB的工作原理是一样的,没有什么差别。
若干问题:
1.为什么用Windows 95/98中的“网上邻居”中看不到有些用户?
回答:请参看“Ethernet HUB是如何工作的?”和“Windows 95/98对等网的浏览”中的分析,并着重检查半双工/全双工是否设置正确?电缆是否正确连接?计算机中软件配置是否一致、正确?
2.对于新太阳NS1212 Switch,为什么将一个用户从一个端口转到另一个端口时需较长时间才能发现该用户?
回答:这个问题涉及自动地址学习和自动地址年龄问题。首先NS1212 Switch是有自动MAC地址学习功能和自动地址年龄功能,年龄时间缺省为300秒。
当一个MAC地址原挂在端口A时,NS1212的地址表中有一项记录了该MAC地址与端口A的关系,将该MAC地址(计算机)从端口A移到端口B时,如果不从端口B发出Ethernet 包,则NS1212 Switch不知道此变化,仍然认为该MAC地址仍在端口A,所有发往该MAC地址的包仍发往端口A而不是端口B,从而导致该包丢失,使Ehternet上层软件将该包重发。经过300秒后(该时间可用网管模块改变),若仍然没有从端口B收到该MAC地址发出的包,则NS1212 Switch自动从地址表删去该MAC地址,以后去往该MAC地址的包被当作广播包处理,当然被发到端口B,从而找到该MAC地址,重新改写NS1212 Switch中的地址表。
因此,要使计算机从一个端口移到另一个端口后尽快被其它用户发现,则应在新的端口上发一个包,如在Windows 95/98上主动查看“网上邻居”等,从而使NS1212 Swicth尽快更新地址表。即搬家后要尽快通知邮局,才能使朋友的信件尽快到达。
网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接 phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。
下面继续让我们来关心一下PHY和MAC之间是如何传送数据和相互沟通的。通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface)界面通过读写PHY的寄存器来完成的。PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。我们看到了,不论是物理连接的MII界面和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。一片网卡主要功能的实现就基本上是上面这些器件了。其他的,还有一颗EEPROM芯片,通常是一颗93C46。里面记录了网卡芯片的供应商ID、子系统供应商ID、网卡的MAC地址、网卡的一些配置,如SMI总线上PHY的地址,BOOTROM的容量,是否启用BOOTROM引导系统等东西。很多网卡上还有 BOOTROM这个东西,它是用于无盘工作站引导操作系统的。既然无盘,一些引导用必需用到的程序和协议栈就放到里面了,例如RPL、PXE等。实际上它就是一个标准的PCI ROM。所以才会有一些硬盘写保护卡可以通过烧写网卡的BootRom来实现。其实PCI设备的ROM是可以放到主板BIOS里面的。启动电脑的时候一样可以检测到这个ROM并且正确识别它是什么设备的。AGP在配置上和PCI很多地方一样,所以很多显卡的BIOS也可以放到主板BIOS里面。这就是为什么板载的网卡我们从来没有看到过BOOTROM的原因。
2。工作过程, PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加 1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则(10Based-T的NRZ编码或100based-T的曼彻斯特编码)把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。现在来了解PHY的输出后面部分。一颗CMOS制程的芯片工作的时候产生的信号电平总是大于 0V的(这取决于芯片的制程和设计需求),但是这样的信号送到100米甚至更长的地方会有很大的直流分量的损失。而且如果外部网现直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏。再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A传到B,由于A设备的0V电平和B点的0V电平不一样,这样会导致很大的电流从电势高的设备流向电势低的设备。我们如何解决这个问题呢?这时就出现了Transformer(隔离变压器)这个器件。它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据。隔离变压器本身就是设计为耐2KV~3KV的电压的。也起到了防雷感应(我个人认为这里用防雷击不合适)保护的作用。有些朋友的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是隔离变压器起到了保护作用。
有关MAC、PHY和MII
http://blog.sina.com.cn/s/blog_5f70c7060100jyjg.html
以太网(Ethernet)是一种计算机局域网组网技术,该技术基于IEEE制定的IEEE 802.3标准,它规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术。它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。基于以太网的应用一定时期内是研究开发热点。
ETHERNET的接口实质是MAC通过MII总线控制PHY的过程。
MAC是Media Access Control 的缩写,即媒体访问控制子层协议。该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质。在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层;在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC层。以太网MAC由IEEE-802.3以太网标准定义。
MII即媒体独立接口, “媒体独立”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号,包括TX_ER,TXD<3:0>,TX_EN,TX_CLK,COL,RXD<3:0>,RX_EX,RX_CLK,CRS,RX_DV等。
MII以4位半字节方式传送数据双向传输,时钟速率25MHz。其工作速率可达100Mb/s。MII管理接口是个双信号接口,一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。其管理是使用SMI(Serial Management Interface)总线通过读写PHY的寄存器来完成的。PHY里面的部分寄存器是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。不论是物理连接的MII总线和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。
PHY是物理接口收发器,它实现物理层。包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。
100BaseTX采用4B/5B编码。PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC),每4bit就增加1bit的检错码,然后把并行数据转化为串行流数据,再按照物理层的编码规则把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。PHY还有个重要的功能就是实现CSMA/CD的部分功能。它可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去。如果两个碰巧同时送出了数据,那样必将造成冲突,这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据。这个随机时间很有讲究的,并不是一个常数,在不同的时刻计算出来的随机时间都是不同的,而且有多重算法来应付出现概率很低的同两台主机之间的第二次冲突。通信速率通过双方协商,协商的结果是两个设备中能同时支持的最大速度和最好的双工模式。这个技术被称为Auto Negotiation或者NWAY。隔离变压器把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端。RJ-45中1、2是传送数据的,3、6是接收数据的。新的PHY支持AUTO MDI-X功能(也需要隔离变压器支持)。它可以实现RJ-45接口的1、2上的传送信号线和3、6上的接收信号线的功能自动互相交换
网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。
MAC 和PHY 一个是数据链路层一个是物理层两者,通过MII传送数据。
问:如何实现单片以太网微控制器?
答:诀窍是将微控制器、以太网媒体接入控制器(MAC)和物理接口收发器(PHY)整合进同一芯片,这样能去掉许多外接元器件。这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积。单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下。
问:以太网MAC是什么?
答:MAC就是媒体接入控制器。以太网MAC由IEEE-802.3以太网标准定义。它实现了一个数据链路层。最新的MAC同时支持10Mbps和100Mbps两种速率。通常情况下,它实现MII接口。
问:什么是MII?
答:MII即媒体独立接口,它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1)。数据接口包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号。管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。
问:以太网PHY是什么?
答:PHY是物理接口收发器,它实现物理层。IEEE-802.3标准定义了以太网PHY。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。
问:造成以太网MAC和PHY单片整合难度高的原因是什么?
答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件。芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。
问: 除RJ-45接口外,还需要其它元件吗?
答:需要其它元件。虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及一个局域网绝缘模块。绝缘模块一般采用一个1:1的变压器。这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。
问:10BaseT和100BaseTX PHY实现方式不同的原因何在?
答:两种实现的分组描述本质上是一样的,但两者的信令机制完全不同。其目的是阻止一种硬件实现容易地处理两种速度。10BaseT采用曼彻斯特编码,100BaseTX采用4B/5B编码。
问:什么是曼彻斯特编码?
答:曼彻斯特编码又称曼彻斯特相位编码,它通过相位变化来实现每个位(图2)。通常,用一个时钟周期中部的上升沿表示“1”,下降沿表示“0”。周期末端的相位变化可忽略不计,但有时又可能需要将这种相位变化计算在内,这取决于前一位的值。
问:什么是4B/5B编码?
答:4B/5B编码是一种块编码方式。它将一个4位的块编码成一个5位的块。这就使5位块内永远至少包含2个“1”转换,所以在一个5位块内总能进行时钟同步。该方法需要25%的额外开销。