阅读目录
- 一、普通同步方式
- 二、事务方式(Transactions)
- 三、管道(Pipelining)
- 四、管道中调用事务
- 五、分布式直连同步调用
- 六、分布式直连异步调用
- 七、分布式连接池同步调用
- 八、分布式连接池异步调用
- 九、需要注意的地方
- 十、测试
- 十一、完整的测试代码
- jedis是一个著名的key-value存储系统,而作为其官方推荐的java版客户端jedis也非常强大和稳定,支持事务、管道及有jedis自身实现的分布式。
在这里对jedis关于事务、管道和分布式的调用方式做一个简单的介绍和对比:
一、普通同步方式
最简单和基础的调用方式,
1
2
3
4
5
6
7
8
9
10
11
|
@Test
public
void
test1Normal() {
Jedis jedis =
new
Jedis(
"localhost"
);
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
String result = jedis.set(
"n"
+ i,
"n"
+ i);
}
long
end = System.currentTimeMillis();
System.out.println(
"Simple SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
jedis.disconnect();
}
|
很简单吧,每次set
之后都可以返回结果,标记是否成功。
二、事务方式(Transactions)
redis的事务很简单,他主要目的是保障,一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。
看下面例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
@Test
public
void
test2Trans() {
Jedis jedis =
new
Jedis(
"localhost"
);
long
start = System.currentTimeMillis();
Transaction tx = jedis.multi();
for
(
int
i =
0
; i <
100000
; i++) {
tx.set(
"t"
+ i,
"t"
+ i);
}
List<Object> results = tx.exec();
long
end = System.currentTimeMillis();
System.out.println(
"Transaction SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
jedis.disconnect();
}
|
我们调用jedis.watch(…)
方法来监控key,如果调用后key值发生变化,则整个事务会执行失败。另外,事务中某个操作失败,并不会回滚其他操作。这一点需要注意。还有,我们可以使用discard()
方法来取消事务。
三、管道(Pipelining)
有时,我们需要采用异步方式,一次发送多个指令,不同步等待其返回结果。这样可以取得非常好的执行效率。这就是管道,调用方法如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
@Test
public
void
test3Pipelined() {
Jedis jedis =
new
Jedis(
"localhost"
);
Pipeline pipeline = jedis.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"p"
+ i,
"p"
+ i);
}
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
System.out.println(
"Pipelined SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
jedis.disconnect();
}
|
四、管道中调用事务
就Jedis提供的方法而言,是可以做到在管道中使用事务,其代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
@Test
public
void
test4combPipelineTrans() {
jedis =
new
Jedis(
"localhost"
);
long
start = System.currentTimeMillis();
Pipeline pipeline = jedis.pipelined();
pipeline.multi();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
""
+ i,
""
+ i);
}
pipeline.exec();
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
System.out.println(
"Pipelined transaction: "
+ ((end - start)/
1000.0
) +
" seconds"
);
jedis.disconnect();
}
|
但是经测试(见本文后续部分),发现其效率和单独使用事务差不多,甚至还略微差点。
五、分布式直连同步调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
@Test
public
void
test5shardNormal() {
List<JedisShardInfo> shards = Arrays.asList(
new
JedisShardInfo(
"localhost"
,
6379
),
new
JedisShardInfo(
"localhost"
,
6380
));
ShardedJedis sharding =
new
ShardedJedis(shards);
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
String result = sharding.set(
"sn"
+ i,
"n"
+ i);
}
long
end = System.currentTimeMillis();
System.out.println(
"Simple@Sharing SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
sharding.disconnect();
}
|
这个是分布式直接连接,并且是同步调用,每步执行都返回执行结果。类似地,还有异步管道调用。
六、分布式直连异步调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
@Test
public
void
test6shardpipelined() {
List<JedisShardInfo> shards = Arrays.asList(
new
JedisShardInfo(
"localhost"
,
6379
),
new
JedisShardInfo(
"localhost"
,
6380
));
ShardedJedis sharding =
new
ShardedJedis(shards);
ShardedJedisPipeline pipeline = sharding.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"sp"
+ i,
"p"
+ i);
}
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
System.out.println(
"Pipelined@Sharing SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
sharding.disconnect();
}
|
七、分布式连接池同步调用
如果,你的分布式调用代码是运行在线程中,那么上面两个直连调用方式就不合适了,因为直连方式是非线程安全的,这个时候,你就必须选择连接池调用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
@Test
public
void
test7shardSimplePool() {
List<JedisShardInfo> shards = Arrays.asList(
new
JedisShardInfo(
"localhost"
,
6379
),
new
JedisShardInfo(
"localhost"
,
6380
));
ShardedJedisPool pool =
new
ShardedJedisPool(
new
JedisPoolConfig(), shards);
ShardedJedis one = pool.getResource();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
String result = one.set(
"spn"
+ i,
"n"
+ i);
}
long
end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println(
"Simple@Pool SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
pool.destroy();
}
|
上面是同步方式,当然还有异步方式。
八、分布式连接池异步调用
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
@Test
public
void
test8shardPipelinedPool() {
List<JedisShardInfo> shards = Arrays.asList(
new
JedisShardInfo(
"localhost"
,
6379
),
new
JedisShardInfo(
"localhost"
,
6380
));
ShardedJedisPool pool =
new
ShardedJedisPool(
new
JedisPoolConfig(), shards);
ShardedJedis one = pool.getResource();
ShardedJedisPipeline pipeline = one.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"sppn"
+ i,
"n"
+ i);
}
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println(
"Pipelined@Pool SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
pool.destroy();
}
|
九、需要注意的地方
-
事务和管道都是异步模式。在事务和管道中不能同步查询结果。比如下面两个调用,都是不允许的:
12345678910111213141516171819Transaction tx = jedis.multi();
for
(
int
i =
0
; i <
100000
; i++) {
tx.set(
"t"
+ i,
"t"
+ i);
}
System.out.println(tx.get(
"t1000"
).get());
//不允许
List<Object> results = tx.exec();
…
…
Pipeline pipeline = jedis.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"p"
+ i,
"p"
+ i);
}
System.out.println(pipeline.get(
"p1000"
).get());
//不允许
List<Object> results = pipeline.syncAndReturnAll();
-
事务和管道都是异步的,个人感觉,在管道中再进行事务调用,没有必要,不如直接进行事务模式。
-
分布式中,连接池的性能比直连的性能略好(见后续测试部分)。
-
分布式调用中不支持事务。
因为事务是在服务器端实现,而在分布式中,每批次的调用对象都可能访问不同的机器,所以,没法进行事务。
十、测试
运行上面的代码,进行测试,其结果如下:
1
2
3
4
5
6
7
8
9
10
11
|
Simple SET:
5.227
seconds
Transaction SET:
0.5
seconds
Pipelined SET:
0.353
seconds
Pipelined transaction:
0.509
seconds
Simple
@Sharing
SET:
5.289
seconds
Pipelined
@Sharing
SET:
0.348
seconds
Simple
@Pool
SET:
5.039
seconds
Pipelined
@Pool
SET:
0.401
seconds
|
另外,经测试分布式中用到的机器越多,调用会越慢。上面是2片,下面是5片:
1
2
3
4
|
Simple
@Sharing
SET:
5.494
seconds
Pipelined
@Sharing
SET:
0.51
seconds
Simple
@Pool
SET:
5.223
seconds
Pipelined
@Pool
SET:
0.518
seconds
|
下面是10片:
1
2
3
4
|
Simple
@Sharing
SET:
5.9
seconds
Pipelined
@Sharing
SET:
0.794
seconds
Simple
@Pool
SET:
5.624
seconds
Pipelined
@Pool
SET:
0.762
seconds
|
下面是100片:
1
2
3
4
|
Simple
@Sharing
SET:
14.055
seconds
Pipelined
@Sharing
SET:
8.185
seconds
Simple
@Pool
SET:
13.29
seconds
Pipelined
@Pool
SET:
7.767
seconds
|
分布式中,连接池方式调用不但线程安全外,根据上面的测试数据,也可以看出连接池比直连的效率更好。
十一、完整的测试代码
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
package
com.example.nosqlclient;
import
java.util.Arrays;
import
java.util.List;
import
org.junit.AfterClass;
import
org.junit.BeforeClass;
import
org.junit.Test;
import
redis.clients.jedis.Jedis;
import
redis.clients.jedis.JedisPoolConfig;
import
redis.clients.jedis.JedisShardInfo;
import
redis.clients.jedis.Pipeline;
import
redis.clients.jedis.ShardedJedis;
import
redis.clients.jedis.ShardedJedisPipeline;
import
redis.clients.jedis.ShardedJedisPool;
import
redis.clients.jedis.Transaction;
import
org.junit.FixMethodOrder;
import
org.junit.runners.MethodSorters;
@FixMethodOrder
(MethodSorters.NAME_ASCENDING)
public
class
TestJedis {
private
static
Jedis jedis;
private
static
ShardedJedis sharding;
private
static
ShardedJedisPool pool;
@BeforeClass
public
static
void
setUpBeforeClass()
throws
Exception {
List<JedisShardInfo> shards = Arrays.asList(
new
JedisShardInfo(
"localhost"
,
6379
),
new
JedisShardInfo(
"localhost"
,
6379
));
//使用相同的ip:port,仅作测试
jedis =
new
Jedis(
"localhost"
);
sharding =
new
ShardedJedis(shards);
pool =
new
ShardedJedisPool(
new
JedisPoolConfig(), shards);
}
@AfterClass
public
static
void
tearDownAfterClass()
throws
Exception {
jedis.disconnect();
sharding.disconnect();
pool.destroy();
}
@Test
public
void
test1Normal() {
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
String result = jedis.set(
"n"
+ i,
"n"
+ i);
}
long
end = System.currentTimeMillis();
System.out.println(
"Simple SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test2Trans() {
long
start = System.currentTimeMillis();
Transaction tx = jedis.multi();
for
(
int
i =
0
; i <
100000
; i++) {
tx.set(
"t"
+ i,
"t"
+ i);
}
//System.out.println(tx.get("t1000").get());
List<Object> results = tx.exec();
long
end = System.currentTimeMillis();
System.out.println(
"Transaction SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test3Pipelined() {
Pipeline pipeline = jedis.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"p"
+ i,
"p"
+ i);
}
//System.out.println(pipeline.get("p1000").get());
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
System.out.println(
"Pipelined SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test4combPipelineTrans() {
long
start = System.currentTimeMillis();
Pipeline pipeline = jedis.pipelined();
pipeline.multi();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
""
+ i,
""
+ i);
}
pipeline.exec();
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
System.out.println(
"Pipelined transaction: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test5shardNormal() {
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
String result = sharding.set(
"sn"
+ i,
"n"
+ i);
}
long
end = System.currentTimeMillis();
System.out.println(
"Simple@Sharing SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test6shardpipelined() {
ShardedJedisPipeline pipeline = sharding.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"sp"
+ i,
"p"
+ i);
}
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
System.out.println(
"Pipelined@Sharing SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test7shardSimplePool() {
ShardedJedis one = pool.getResource();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
String result = one.set(
"spn"
+ i,
"n"
+ i);
}
long
end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println(
"Simple@Pool SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
@Test
public
void
test8shardPipelinedPool() {
ShardedJedis one = pool.getResource();
ShardedJedisPipeline pipeline = one.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"sppn"
+ i,
"n"
+ i);
}
List<Object> results = pipeline.syncAndReturnAll();
long
end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println(
"Pipelined@Pool SET: "
+ ((end - start)/
1000.0
) +
" seconds"
);
}
}
|
From: http://www.open-open.com/lib/view/open1410485827242.html