对几种中文分析器,从分词准确性和效率两方面进行比较。分析器依次为:
StandardAnalyzer、ChineseAnalyzer、CJKAnalyzer、IK_CAnalyzer、MIK_CAnalyzer、MMAnalyzer(JE分词)、PaodingAnalyzer。
单纯的中文分词的实现一般为按字索引或者按词索引。按字索引顾名思义,就是按单个字建立索引。按词索引就是按词喽,根据词库中的词,将文字进行切分。车东的交叉双字分割或者叫二元分词我觉得应该算是按字索引的改进,应该还是属于字索引的范畴吧。
分词准确性的评估比较难,很难有统一的标准,不同应用的要求也不同,这个统一以“2008年8月8日晚,举世瞩目的北京第二十九届奥林匹克运动会开幕式在国家体育场隆重举行。”为例说明。
分词效率,统一使用《射雕英雄传》的全文文本为例说明。呵呵。对于按词索引的分析器,使用统一的基本词库,词汇量为227,719个。在开发环境下运行,性能不准确,但可比较相对值。
分析器分类:
按字 |
StandardAnalyzer |
Lucene自带的标准分析器。 |
ChineseAnalyzer |
Lucene contrib中附带的分析器,与StandardAnalyzer类似。注意是类似啊,还是有区别的。 |
|
CJKAnalyzer |
Lucene contrib中附带的二元分词 |
|
按词 |
IK_CAnalyzer、MIK_CAnalyzer |
http://lucene-group.group.javaeye.com/group/blog/165287。使用版本为2.0.2 |
MMAnalyzer |
现在能找到的最新版本是1.5.3。不过在原始网站已经找不到下载了,而且据说声明为不提供维护和支持。因为谈论的人比较多,所以列出来。但在使用中感觉不太稳定。 |
|
PaodingAnalyzer |
庖丁解牛。http://code.google.com/p/paoding/downloads/list。使用版本为2.0.4beta。 |
分词准确性:
StandardAnalyzer |
2008/年/8/月/8/日/晚/举/世/瞩/目/的/北/京/第/二/十/九/届/奥/林/匹/克/运/动/会/开/幕/式/在/国/家/体/育/场/隆/重/举/行/ |
一元分词,没什么好说的。 |
ChineseAnalyzer |
年/月/日/晚/举/世/瞩/目/的/北/京/第/二/十/九/届/奥/林/匹/克/运/动/会/开/幕/式/在/国/家/体/育/场/隆/重/举/行/ |
还是有区别吧,这是因为ChineseAnalyzer只对Character.LOWERCASE_LETTER、Character.UPPERCASE_LETTER、和Character.OTHER_LETTER进行了处理,其他类型的都滤掉了。具体可以参见代码。 |
CJKAnalyzer |
2008/年/8/月/8/日晚/举世/世瞩/瞩目/目的/的北/北京/京第/第二/二十/十九/九届/届奥/奥林/林匹/匹克/克运/运动/动会/会开/开幕/幕式/式在/在国/国家/家体/体育/育场/场隆/隆重/重举/举行/ |
二元分词,作为一元分词的改进,建立的索引小于一元,查询效率较好,能满足一般的查询要求。 |
PaodingAnalyzer |
2008/年/8/月/8/日/晚/举世/瞩目/举世瞩目/目的/北京/二/第二/十/二十/第二十/九/十九/二十九/九届/奥林/奥林匹克/运动/运动会/奥林匹克运动会/开幕/开幕式/国家/体育/体育场/隆重/举行/隆重举行/ |
细粒度全切分。对于不在词典中的词进行二元分词。 |
IK_CAnalyzer |
2008年/2008/年/8月/8/月/8日/8/晚/举世瞩目/举世/瞩目/目的/北京/第二十九届/第二十九/第二十/第二/二十九/二十/十九/九届/九/奥林匹克运动会/奥林匹克/奥林/运动会/运动/开幕式/开幕/在国/国家/国/体育场/体育/隆重举行/隆重/举行/行/ |
细粒度全切分。对于不在词典中的词进行二元分词。 |
MIK_CAnalyzer |
2008年/8月/8日/晚/举世瞩目/目的/北京/第二十九届/奥林匹克运动会/开幕式/在国/国家/体育场/隆重举行/ |
最大匹配分词。和细粒度全切分配合使用。 |
MMAnalyzer |
2008/年/8/月/8/日/晚/举世瞩目/北京/第二十/九届/奥林匹克运动会/开幕式/国家/体育场/隆重举行/ |
对于不在字典项的内容,进行一元分词。 |
分词性能(毫秒):
分析器 |
第一次 |
第二次 |
第三次 |
分词数 |
StandardAnalyzer |
243 |
246 |
241 |
767675 |
ChineseAnalyzer |
245 |
233 |
242 |
766298 |
CJKAnalyzer |
383 |
383 |
373 |
659264 |
PaodingAnalyzer |
927 |
899 |
909 |
482890 |
IK_CAnalyzer |
1842 |
1877 |
1855 |
530830 |
MIK_CAnalyzer |
2009 |
1978 |
1998 |
371013 |
MMAnalyzer |
2923 |
2933 |
2948 |
392521 |
需要说明的是,IK_CAnalyzer在性能上对于词典的敏感度较高。
总结:
对于一般性的应用,采用二元分词法应该就可以满足需求。如果需要分词的话,从分词效果、性能、扩展性、还是可维护性来综合考虑,建议使用庖丁解牛。
当前几个主要的Lucene中文分词器的比较
1. 基本介绍:
paoding :Lucene中文分词“庖丁解牛” Paoding Analysis
imdict :imdict智能词典所采用的智能中文分词程序
mmseg4j : 用 Chih-Hao Tsai 的 MMSeg 算法 实现的中文分词器
ik :采用了特有的“正向迭代最细粒度切分算法“,多子处理器分析模式
2. 开发者及开发活跃度:
paoding :qieqie.wang, google code 上最后一次代码提交:2008-06-12,svn 版本号 132
imdict :XiaoPingGao, 进入了 lucene contribute,lucene trunk 中 contrib/analyzers/smartcn/ 最后一次提交:2009-07-24,
mmseg4j :chenlb2008,google code 中 2009-08-03 (昨天),版本号 57,log为:mmseg4j-1.7 创建分支
ik :linliangyi2005,google code 中 2009-07-31,版本号 41
3. 用户自定义词库:
paoding :支持不限制个数的用户自定义词库,纯文本格式,一行一词,使用后台线程检测词库的更新,自动编译更新过的词库到二进制版本,并加载
imdict :暂时不支持用户自定义词库。但 原版 ICTCLAS 支持。支持用户自定义 stop words
mmseg4j :自带sogou词库,支持名为 wordsxxx.dic, utf8文本格式的用户自定义词库,一行一词。不支持自动检测。 -Dmmseg.dic.path
ik : 支持api级的用户词库加载,和配置级的词库文件指定,无 BOM 的 UTF-8 编码,/r/n 分割。不支持自动检测。
4. 速度(基于官方介绍,非自己测试)
paoding :在PIII 1G内存个人机器上,1秒 可准确分词 100万 汉字
imdict :483.64 (字节/秒),259517(汉字/秒)
mmseg4j : complex 1200kb/s左右, simple 1900kb/s左右
ik :具有50万字/秒的高速处理能力
5. 算法和代码复杂度
paoding :svn src 目录一共1.3M,6个properties文件,48个java文件,6895 行。使用不用的 Knife 切不同类型的流,不算很复杂。
imdict :词库 6.7M(这个词库是必须的),src 目录 152k,20个java文件,2399行。使用 ICTCLAS HHMM隐马尔科夫模型,“利用大量语料库的训练来统计汉语词汇的词频和跳转概率,从而根据这些统计结果对整个汉语句子计算最似然(likelihood)的切分”
mmseg4j : svn src 目录一共 132k,23个java文件,2089行。MMSeg 算法 ,有点复杂。
ik : svn src 目录一共6.6M(词典文件也在里面),22个java文件,4217行。多子处理器分析,跟paoding类似,歧义分析算法还没有弄明白。
6. 文档
paoding :几乎无。代码里有一些注释,但因为实现比较复杂,读代码还是有一些难度的。
imdict : 几乎无。 ICTCLAS 也没有详细的文档,HHMM隐马尔科夫模型的数学性太强,不太好理解。
mmseg4j : MMSeg 算法 是英文的,但原理比较简单。实现也比较清晰。
ik : 有一个pdf使用手册,里面有使用示例和配置说明。
7. 其它
paoding :引入隐喻,设计比较合理。search 1.0 版本就用的这个。主要优势在于原生支持词库更新检测。主要劣势为作者已经不更新甚至不维护了。
imdict :进入了 lucene trunk,原版 ictclas 在各种评测中都有不错的表现,有坚实的理论基础,不是个人山寨。缺点为暂时不支持用户词库。
mmseg4j : 在complex基础上实现了最多分词(max-word),但是还不成熟,还有很多需要改进的地方。
ik : 针对Lucene全文检索优化的查询分析器IKQueryParser
8. 结论
个人觉得,可以在 mmseg4j 和 paoding 中选一个。关于这两个分词效果的对比,可以参考:
http://blog.chenlb.com/2009/04/mmseg4j-max-word-segment-compare-with-paoding-in-effect.html
或者自己再包装一下,将 paoding 的词库更新检测做一个单独的模块实现,然后就可以在所有基于词库的分词算法之间无缝切换了。
ps,对不同的 field 使用不同的分词器是一个可以考虑的方法。比如 tag 字段,就应该使用一个最简单的分词器,按空格分词就可以了。
http://my.oschina.net/MrMichael/blog/335611