数学建模简单的说就是求最大化最小化问题,现在大学都有数学建模比赛,另外做科研的时候其实也经常用到。一般要么是用Lingo,要么是用matlab,其实AMPL是比较通用的描述及数学建模的语言,不过比较贵,记得我以前发神经买过一年的license花了我快2000块钱。
现在cplex或者ampl都有破解版的可以下到,不过毕竟不知道什么时候就不能用了,其实也有免费的软件可以用,glpk就可以解LP或者MIP的问题,而且还自带一个简单的模型描述语言,不过有时候要描述复杂一点的场景就有点不行了。
PULP是用python写的建模描述语言,自带的例子里面就带有column generation的例子,显然是比glpk自带的那个强不少,下面就用一个例子来说明一个简单建模的流程吧。
# Import PuLP modeler functions from pulp import * # A new LP problem prob = LpProblem("test1", LpMinimize) # Variables # 0 <= x <= 4 x = LpVariable("x", 0, 4) # -1 <= y <= 1 y = LpVariable("y", -1, 1) # 0 <= z z = LpVariable("z", 0) # Use None for +/- Infinity, i.e. z <= 0 -> LpVariable("z", None, 0) # Objective prob += x + 4*y + 9*z, "obj" # (the name at the end is facultative) # Constraints prob += x+y <= 5, "c1" prob += x+z >= 10, "c2" prob += -y+z == 7, "c3" # (the names at the end are facultative) # Write the problem as an LP file prob.writeLP("test1.lp") # Solve the problem using the default solver prob.solve() # Use prob.solve(GLPK()) instead to choose GLPK as the solver # Use GLPK(msg = 0) to suppress GLPK messages # If GLPK is not in your path and you lack the pulpGLPK module, # replace GLPK() with GLPK("/path/") # Where /path/ is the path to glpsol (excluding glpsol itself). # If you want to use CPLEX, use CPLEX() instead of GLPK(). # If you want to use XPRESS, use XPRESS() instead of GLPK(). # If you want to use COIN, use COIN() instead of GLPK(). In this last case, # two paths may be provided (one to clp, one to cbc). # Print the status of the solved LP print "Status:", LpStatus[prob.status] # Print the value of the variables at the optimum for v in prob.variables(): print v.name, "=", v.varValue # Print the value of the objective print "objective=", value(prob.objective)