原文标题:PEP 0492 -- Coroutines with async and await syntax
原文链接:https://www.python.org/dev/peps/pep-0492/
生效于:Python 3.5
翻译参照版本:05-May-2015
翻译最后修改:2015年8月22日
翻译出处:http://www.cnblogs.com/animalize/p/4738941.html
不断增多的Internet连接程序刺激了对响应性、伸缩性代码的需求。这个PEP的目标在于:制订显式的异步/并发语法,比传统的Python方法更易用、更丰富。
我们准备把协程(协同程序)的概念独立出来,并为其使用新的语法。最终目标是建立一个通用、易学的异步编程的构思模型,并尽量与同步编程的风格相似。
这个PEP假设异步任务被一个事件循环器(类似于标准库里的 asyncio.events.AbstractEventLoop)管理和调度。然而我们并不会依赖某个事件循环器的具体实现方法,从本质上说只与此相关:采用yield作为给调度器的信号,表示协程将会挂起、等待一个异步事件(如IO)的完成。
在这个异步编程不断增长的时期,我们相信这些改变将会使Python保持一定的竞争性,就像许多其它编程语言已经、将要进行的改变那样。
根据Python 3.5 Beta期间的反馈,进行了重新设计,明确地把协程从生成器里独立出来了。协程现在是原生的,有明确的独立类型,而不是作为生成器的一种特殊形式。
这个改变,主要是为了解决在Tornado里使用协程出现的一些问题。
【译注:在Tornado 4.3已经可以使用新的async/await语句,详见此链接】
在以前,我们可以用生成器实现协程(PEP 342),后来又对其进行了改进,引入了yield from语法(PEP 380)。但仍有一些缺点:
这个PEP把协程从生成器独立出来,成为Python的一个原生事物。这会消除协程和生成器之间的混淆,方便编写不依赖特定库的协程代码。也为linter和IDE进行代码静态分析提供了机会。
【译注:在CPython内部,原生协程仍然是基于生成器实现的。】
使用原生协程和相应的新语法,我们可以在异步编程时进行上下文管理(context manager)和进行迭代。如下文所示,新的async with语句可以在进入/离开运行上下文(runtime context)时进行异步调用,而async for语句可以在迭代时进行异步调用。
请理解Python现有的协程(见PEP 342和PEP 380),这次改变的动机来自于asyncio框架(PEP 3156)和Confunctions提案(PEP 3152,此PEP已经被废弃)。
由此,在本文中,我们使用“原生协程”指用新语法声明的协程。“生成器实现的协程”指用传统方法实现的协程。“协程”则用在两个都可以使用的地方。
使用以下语法声明原生协程:
async def read_data(db):
pass
协程语法的关键点:
types模块添加了一个新函数coroutine(fn),使用它,“生成器实现的协程”和“原生协程”之间可以进行互操作。
【译注:这是个装饰器,能把现有代码的“用生成器实现的协程”转化为与“原生协程”兼容的形式】
@types.coroutine
def process_data(db):
data = yield from read_data(db)
...
coroutine(fn)函数给生成器的代码对象(code object)设置CO_ITERABLE_COROUTINE标识,使它返回一个协程对象。
如果fn不是一个生成器函数,它什么也不做。如果fn是一个生成器函数,则会被一个awaitable代理对象(proxy object)包装(wrapped),详见下文的“定义awaitable对象”。
注意, types.coroutine()不会设置CO_COROUTINE标识,只有用新语法定义的原生协程才会有这个标识。
【译注: @types.coroutine装饰器仅给生成器函数设置一个CO_ITERABLE_COROUTINE标识,除此之外什么也不做。但是如果生成器函数没有这个标识,await语句不会接受它的对象作为参数。】
新的await表达式用于获得协程执行的结果:
async def read_data(db):
data = await db.fetch('SELECT ...')
...
await和yield from类似,它挂起read_data的执行,直到db.fetch执行完毕并返回结果。
以CPython内部,await使用了yield from的实现,但加入了一个额外步骤——验证它的参数类型。await只接受awaitable对象,awaitable对象是以下的其中一个:
一个有__await__方法的对象(__await__方法返回的一个迭代器)
每个yield from调用链条都会追溯到一个最终的yield语句,这是Future实现的基本机制。在Python内部,由于协程是生成器的一种特殊形式,所以每个await最终会被await调用链条上的某个yield语句挂起。(详情请参考PEP 3156)
【译注:Future对象用来表示在未来完成的某项任务。】
为了让协程也有这样的行为,添加了一个新的魔术方法__await__。【译注:一系列递归调用必终结于某个return具体结果的语句;一个yield from调用链条必终结于某个yield语句;类似的,一个await调用链条必终结于某个有__await__方法的对象。】例如,在asyncio模块,要想在await语句里使用Future对象,唯一的修改是给asyncio.Future加一行:__await__ = __iter__
在本文中,有__await__方法的对象被称为Future-like对象。
【译注:协程会被await语句挂起,直到await语句右边的Future-like对象的__await__执行完毕、返回结果。】
另外,请注意__aiter__方法(见下文)不能被用于此目的。那是另一套东西,这样做的话,类似于callable对象使用__iter__代替__call__。【译注:意思是__await__和__aiter__的关系有点像callable对象里__call__和__iter__的关系】
如果__await__返回的不是一个迭代器,则引发TypeError异常。在CPython C API,有tp_as_async.am_await函数的对象,该函数返回一个迭代器(类似__await__方法)
如果在async def函数之外使用await语句,会引发SyntaxError异常。这和在def函数之外使用yield语句一样。
如果await右边不是一个awaitable对象,会引发TypeError异常。
【译注:总体略去不译。】
await语句和yield、yield from的一个区别是:await语句多数情况下不需要被圆括号包围。
有效用法:
表达式 | 被解析为 |
---|---|
if await fut: pass | if (await fut): pass |
if await fut + 1: pass | if (await fut) + 1: pass |
pair = await fut, 'spam' | pair = (await fut), 'spam' |
with await fut, open(): pass | with (await fut), open(): pass |
await foo()['spam'].baz()() | await ( foo()['spam'].baz()() ) |
return await coro() | return ( await coro() ) |
res = await coro() ** 2 | res = (await coro()) ** 2 |
func(a1=await coro(), a2=0) | func(a1=(await coro()), a2=0) |
await foo() + await bar() | (await foo()) + (await bar()) |
-await foo() | -(await foo()) |
无效用法:
表达式 | 应该写为 |
---|---|
await await coro() | await (await coro()) |
await -coro() | await (-coro()) |
异步上下文管理器(asynchronous context manager),可以在它的enter和exit方法里挂起、调用异步代码。
为此,我们设计了一套方案,添加了两个新的魔术方法:__aenter__和__aexit__,它们必须返回一个awaitable。
异步上下文管理器的一个示例:
class AsyncContextManager:
async def __aenter__(self):
await log('entering context')
async def __aexit__(self, exc_type, exc, tb):
await log('exiting context')
采纳了一个异步上下文管理器的新语法:
async with EXPR as VAR:
BLOCK
在语义上等同于:
mgr = (EXPR)
aexit = type(mgr).__aexit__
aenter = type(mgr).__aenter__(mgr)
exc = True
VAR = await aenter
try:
BLOCK
except:
if not await aexit(mgr, *sys.exc_info()):
raise
else:
await aexit(mgr, None, None, None)
和普通的with语句一样,可以在单个async with语句里指定多个上下文管理器。
在使用async with时,如果上下文管理器没有__aenter__和__aexit__方法,则会引发错误。在async def函数之外使用async with则会引发SyntaxError异常。
有了异步上下文管理器,协程很容易实现对数据库处理的恰当管理。
async def commit(session, data):
...
async with session.transaction():
...
await session.update(data)
...
再比如,加锁时看着更简洁:
async with lock:
...
而不是:
with (yield from lock):
...
异步迭代器可以在它的iter实现里挂起、调用异步代码,也可以在它的__next__方法里挂起、调用异步代码。要支持异步迭代,需要:
异步迭代的一个示例:
class AsyncIterable:
async def __aiter__(self):
return self
async def __anext__(self):
data = await self.fetch_data()
if data:
return data
else:
raise StopAsyncIteration
async def fetch_data(self):
...
采纳了一个迭代异步迭代器的新语法:
async for TARGET in ITER:
BLOCK
else:
BLOCK2
在语义上等同于:
iter = (ITER)
iter = await type(iter).__aiter__(iter)
running = True
while running:
try:
TARGET = await type(iter).__anext__(iter)
except StopAsyncIteration:
running = False
else:
BLOCK
else:
BLOCK2
如果async for的迭代器不支持__aiter__方法,则引发TypeError异常。如果在async def函数外使用async for,则引发SyntaxError异常。
和普通的for语句一样,async for有一个可选的else分句。
有了异步迭代,我们可以在迭代时异步缓冲(buffer)数据:
async for data in cursor:
...
Cursor是一个异步迭代器,可以从数据库预读4行数据并缓存。见以下代码:
# 【译注:此代码已被修改,望更易理解】
class Cursor:
def __init__(self):
self.buffer = collections.deque()
async def _prefetch(self):
row1, row2, row3, row4 = await fetch_from_db()
self.buffer.append(row1)
self.buffer.append(row2)
self.buffer.append(row3)
self.buffer.append(row4)
async def __aiter__(self):
return self
async def __anext__(self):
if not self.buffer:
self.buffer = await self._prefetch()
if not self.buffer:
raise StopAsyncIteration
return self.buffer.popleft()
然后,可以这样使用Cursor类:
async for row in Cursor():
print(row)
与下述代码相同:
i = await Cursor().__aiter__()
while True:
try:
row = await i.__anext__()
except StopAsyncIteration:
break
else:
print(row)
这是一个便利类,用于把普通的迭代对象转变为一个异步迭代对象。虽然这个类没什么实际用处,但它演示了普通迭代器和异步迭代器的关系:
class AsyncIteratorWrapper:
def __init__(self, obj):
self._it = iter(obj)
async def __aiter__(self):
return self
async def __anext__(self):
try:
value = next(self._it)
except StopIteration:
raise StopAsyncIteration
return value
async for letter in AsyncIteratorWrapper("abc"):
print(letter)
在CPython内部,协程的实现仍然是基于生成器的。所以,在PEP 479生效之前【译注:将在Python 3.7正式生效,在3.5、3.6需要from __future__ import generator_stop】,以下两个代码是完全一样的,最终都是抛出一个StopIteration('spam')异常:
def g1():
yield from fut
return 'spam'
和
def g2():
yield from fut
raise StopIteration('spam')
由于PEP 479已被正式采纳,并作用于协程,以下代码的StopIteration会被包装(wrapp)成一个RuntimeError。
async def a1():
await fut
raise StopIteration('spam')
所以,要想通知外部代码迭代已经结束,抛出一个StopIteration异常的方法不行了。因此,添加了一个新的内置异常StopAsyncIteration,用于表示迭代结束。
此外,根据PEP 479,协程抛出的所有StopIteration异常都会被包装成RuntimeError异常。
【译注:如果生成器内部的代码出现StopIteration异常、且未被捕获,则外部代码会误认为生成器已经迭代结束。为了消除这样的误会,PEP 479的规定,Python会把生成器内部抛出的StopIteration包装成RuntimeError。
在以后,如果想主动结束一个生成器的迭代,用return语句即可(这时生成器仍然会给外部代码抛出一个StopIteration异常),而不是以前的raise StopIteration(这样的话,StopIteration会被包装成一个RuntimeError)。
有人在邮件列表问“为什么异步迭代器不使用return表示迭代结束?”,回答是:在协程里return会抛出一个StopIteration异常,这样就无法区分普通的return和迭代结束,因此StopAsyncIteration特指迭代结束。
个人感觉Python 3.7时会给这里做一些改变。】
这一小节只对原生协程有效(用async def语法定义的、有CO_COROUTINE标识的)。对于asyncio模块里现有的“基于生成器的协程”,仍然保持不变。
为了在概念上把协程和生成器区分开来,做了以下规定:
【译注: @asyncio.coroutine装饰器,在Python 3.4,用于把一个函数装饰为一个协程。有些函数并不是生成器函数(不含yield或yield from语句),也可以用 @asyncio.coroutine装饰为一个协程。
在Python 3.5中, @asyncio.coroutine也会有 @types.coroutine的效果——使函数的对象可以被await语句接受。】
在CPython内部,协程是基于生成器实现的,因此它们有共同的代码。像生成器对象那样,协程也有throw(),send()和close()方法。
对于协程,StopIteration和GeneratorExit起着同样的作用(虽然PEP 479已经应用于协程)。详见PEP 342、PEP 380,以及Python文档。
对于协程,send(),throw()方法用于往Future-like对象发送内容、抛出异常。
新手在使用协程时可能忘记使用yield from语句,比如:
@asyncio.coroutine
def useful():
asyncio.sleep(1) # 前面忘写yield from,所以程序在这里不会挂起1秒
在asyncio里,对于此类错误,有一个特定的调试方法。装饰器 @coroutine用一个特定的对象包装(wrap)所有函数,这个对象有一个析构函数(destructor)用于记录警告信息。无论何时,一旦被装饰过的生成器被垃圾回收,会生成一个详细的记录信息(具体哪个函数、回收时的stack trace等等)。包装对象提供一个__repr__方法用来输出关于生成器的详细信息。
唯一的问题是如何启用这些调试工具,由于这些调试工具在生产模式里什么也不做,比如 @coroutine必须是在系统变量PYTHONASYNCIODEBUG出现时才具有调试功能。这时可以给asyncio程序进行如下设置:EventLoop.set_debug(true),这时使用另一套调试工具,对 @coroutine的行为没有影响。
根据本文,协程是原生的,已经在概念上和生成器进行了区分。一个从未await的协程会抛出一个RuntimeWarning,除此之外,给sys模块增加了两个新函数set_coroutine_wrapper和get_coroutine_wrapper,它们会为asyncio和其它框架启用高级调试工具,比如显示协程在何处被创建、协程在何处被垃圾回收的详细stack trace。
为了能更好的与现有框架(如Tornado)和其它编译器(如Cython)相整合,增加了两个新的抽象基类(Abstract Base Classes):
注意,“基于生成器的协程”(有CO_ITERABLE_COROUTINE标识)并不实现__await__方法,因此它们不是collections.abc.Coroutine和collections.abc.Awaitable的实例:
@types.coroutine
def gencoro():
yield
assert not isinstance(gencoro(), collections.abc.Coroutine)
# however:
assert inspect.isawaitable(gencoro())
为了更容易地对异步迭代进行调试,又增加了两个抽象基类:
原生协程函数 Native coroutine function
由async def定义的协程函数,可以使用await和return value语句。见“新的协程声明语法”一节。
原生协程 Native coroutine
原生协程函数返回的对象。见“await表达式”一节。
基于生成器的协程函数 Generator-based coroutine function
基于生成器语法的协程,最常见的是用 @asyncio.coroutine装饰过的函数。
基于生成器的协程 Generator-based coroutine
基于生成器的协程函数返回的对象。
协程 Coroutine
“原生协程”和“基于生成器的协程”都是协程。
协程对象 Coroutine object
“原生协程对象”和“基于生成器的协程对象”都是协程对象。
Future-like对象 Future-like object
一个有__await__方法的对象,或一个有tp_as_async->am_await函数的C语言对象,它们返回一个迭代器。Future-like对象可以在协程里被一条await语句消费(consume)。协程会被await语句挂起,直到await语句右边的Future-like对象的__await__执行完毕、返回结果。见“await表达式”一节。
Awaitable
一个Future-like对象或一个协程对象。见“await表达式”一节。
异步上下文管理器 Asynchronous context manager
有__aenter__和__aexit__方法的对象,可以被async with语句使用。见“异步上下文管理器和‘async with’”一节。
可异步迭代对象 Asynchronous iterable
有__aiter__方法的对象, 该方法返回一个异步迭代器对象。可以被async for语句使用。见“异步迭代器和‘async for’”一节。
异步迭代器 Asynchronous iterator
有__anext__方法的对象。见“异步迭代器和‘async for’”一节。
【译注:感觉余下大部分内容不必翻译,如有需要请参看原文。这里只挑选部分内容翻译。】
本PEP保持100%向后兼容。
asyncio模块已经可以使用新语法,并经过测试,100%与async/await兼容。现有的使用asyncio的代码在使用新语法时可以保持不变。
为此,对asyncio模块主要做了如下修改:
由于未经装饰的生成器不能yield from原生协程对象(详见“和生成器的不同之处”一节),因此在使用新语法前,请确保所有“基于生成器的协程”都被 @asyncio.coroutine装饰器装饰。
async和await在CPython 3.5、3.6里暂时不是正式的关键字,在CPython 3.7它们将变成正式的关键字。如果不这样,恐怕对现有代码的迁移造成困难。
【译注:在某些现有代码里,可能使用了async和await作为变量名/函数名。然而Python不允许把关键字当作变量名/函数名,所以3.5、3.6给程序员留了一些迁移时间。】