- 【SequoiaDB】4 巨杉数据库SequoiaDB整体架构
Alen_Liu_SZ
巨杉数据库SequoiaDB架构编目节点协调节点数据节点巨杉数据库
1整体架构SequoiaDB巨杉数据库作为分布式数据库,由数据库存储引擎与数据库实例两大模块组成。其中,数据库存储引擎模块是数据存储的核心,负责提供整个数据库的读写服务、数据的高可用与容灾、ACID与发你不是事务等全部核心数据服务能力。数据库实例模块则作为协议与语法的适配层,用户可根据需要创建包括MySQL、PostgreSQL与SparkSQL在内的结构化数据实例;支持JSON语法的MongoD
- App Store暗藏虚假抖音,内含间谍软件窃取照片和加密货币
FreeBuf-
TikTokAppStoreiOSAndroid
卡巴斯基网络安全研究人员近日发现名为SparkKitty的新型间谍软件活动,该恶意程序已感染苹果AppStore和谷歌Play官方商店的多个应用。这款间谍软件旨在窃取用户移动设备中的所有图片,疑似专门搜寻加密货币相关信息。该攻击活动自2024年初开始活跃,主要针对东南亚和中国用户。伪装流行应用渗透设备SparkKitty间谍软件通过看似无害的应用程序渗透设备,通常伪装成TikTok等流行应用的修改
- 存得快查得准,但就是算不动?试试时序数据库 TDengine × Spark 的组合拳
每个工程师可能都遇到过类似场景:时序数据沉淀在数据库中,格式规范、查询快捷,但当任务升级——比如滑窗聚合、多源拼接、机器学习训练——一些业务可能就需要更强的计算能力和更灵活的分析工具。TDengine专注于高效存储与极速查询,而在数据“算力”层面,我们选择了更强的伙伴。现在,TDengine正式开放与ApacheSpark的无缝集成通道。一个是高性能、低成本的时序数据库,一个是横扫大数据世界的分析
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- Spark教程3:SparkSQL最全介绍
Cachel wood
大数据开发spark大数据分布式计算机网络AHP需求分析
文章目录SparkSQL最全介绍一、SparkSQL概述二、SparkSession:入口点三、DataFrame基础操作四、SQL查询五、SparkSQL函数六、与Hive集成七、数据源操作八、DataFrame与RDD互转九、高级特性十、性能优化十一、Catalyst优化器十二、SparkSQL应用场景十三、常见问题与解决方法SparkSQL最全介绍一、SparkSQL概述SparkSQL是A
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- 讯飞星火(iFlytek Spark):科大讯飞打造的国产AI大模型平台
明似水
AI人工智能
1.产品概述讯飞星火(iFlytekSpark)是科大讯飞自主研发的认知大模型,定位于通用人工智能(AGI)平台,集成了文本生成、语言理解、知识问答、逻辑推理、数学计算、代码生成和多模态交互等核心能力。作为国内首批基于全国产算力平台训练的大模型,讯飞星火在中文理解、语音交互、数学推理等方面表现突出,并持续对标国际顶尖模型(如GPT-4、Gemini)。核心优势全国产化:基于华为昇腾AI芯片和“飞星
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- 深度剖析无感刷新Token:领码SPARK平台赋能微服务认证的智能实践
领码科技
低代码实战篇无感刷新Token领码SPARK微服务认证AI安全双Token机制
摘要在现代微服务架构与数字化转型大潮中,用户身份认证的连续性与安全性尤为关键。无感刷新Token技术通过智能的双Token机制,确保用户访问凭证在不打扰用户的前提下自动续期,避免因Token过期导致的频繁登录中断。本文结合领码SPARK融合平台的iPaaS和aPaaS优势,深刻解析无感刷新Token的实现原理、典型场景、安全风险及AI赋能智能防护,系统阐述实现无感刷新Token的最佳实践。通过流程
- Spark 之 UT
zhixingheyi_tian
sparkspark大数据分布式
AQEOFFpartitionpruninginbroadcasthashjoinswithaliases==OptimizedLogicalPlan==Project[date_id#5283,pid#5281,sid#5282]+-JoinInner,(si
- Spark eventlog 、Event、SparkListener
zhixingheyi_tian
sparkspark大数据分布式
SparkListenerSQLExecutionStartcaseclassSparkListenerSQLExecutionStart(executionId:Long,//iftheexecutionisaroot,thenrootExecutionId==executionId//iftheeventisparsedfromtheeventlogthatgeneratedbySparkno
- 图书《数据资产管理核心技术与应用》核心章节节选-3.1.2. 从Spark 执行计划中获取数据血缘
张永清-老清
大数据spark大数据分布式
本文节选自清华大学出版社出版的图书《数据资产管理核心技术与应用》,作者为张永清等著。从Spark执行计划中获取数据血缘->关注清哥聊技术公众号,了解更多技术文章因为数据处理任务会涉及到数据的转换和处理,所以从数据任务中解析血缘也是获取数据血缘的渠道之一,Spark是大数据中数据处理最常用的一个技术组件,既可以做实时任务的处理,也可以做离线任务的处理。Spark在执行每一条SQL语句的时候,都会生成
- Spark 之 QueryPlan
zhixingheyi_tian
sparkspark大数据分布式
sameResultsrc/main/scala/org/apache/spark/sql/catalyst/plans/QueryPlan.scala/***Returnstruewhenthegivenqueryplanwillreturnthesameresultsasthisqueryplan.**Sinceitslikelyundecidabletogenerallydeterminei
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 通过CDH安装Spark的详细指南
暴躁哥
大数据技术spark大数据分布式
通过CDH安装Spark的详细指南简介ClouderaDistributionofHadoop(CDH)是一个企业级的大数据平台,它集成了多个开源组件,包括Hadoop、Spark、Hive等。本文将详细介绍如何通过CDH安装和配置Spark。前提条件在开始安装之前,请确保满足以下条件:已安装CDH集群具有管理员权限所有节点之间网络互通系统时间同步足够的磁盘空间(建议至少预留20GB)安装步骤1.
- order、sort、distribute和cluster by(Spark/Hive)
有数的编程笔记
Spark/Hivesparkhive大数据
1.abstractORDERBY:完整查询结果的全局行排序。与SORTBY、CLUSTERBY、DISTRIBUTEBY互斥,不能同时使用。示例SELECT*FROMtable_nameORDERBYcolumn_name;SORTBY:只在每个分区内排序,局部排序结果不是全局有序。与ORDERBY、CLUSTERBY互斥,不能同时指定。示例SELECT*FROMtable_nameSORTBY
- 合并小文件汇总(Hive/Spark)
有数的编程笔记
Spark/Hivehivesparkhadoop
合并小文件的原因:过多的小文件会导致HDFS上元数据负载增加。并且小文件也会导致计算性能下降。1.使用hive时1.1.使用hive.merge参数,开启文件合并--控制在map阶段结束后合并输出的小文件,默认值为trueSEThive.merge.mapfiles=true;--控制在reduce阶段结束后合并输出小文件,默认值为falseSEThive.merge.mapredfiles=tr
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- Spark底层原理详细解析
JavaShark
sparkbigdatahadoop
Spark简介ApacheSpark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群。Spark源码从1.x的40w行发展到现在的超过100w行,有1400多位大牛贡献了代码。整个Spark框架源码是一个巨大的工程。下面我们一起来看下spark的底层执行原理。Spark运行流程具
- Java EDW三剑客:如何让数据从“沼泽”变身“报告神器”?手把手教你玩转企业数据仓库!
墨瑾轩
Java乐园java数据仓库开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣一、你的EDW在“数据沼泽”里?是时候请个“数据炼金术士”了!“数据散落在10个系统里,生成月报要熬3个通宵?”——别慌!今天我们就用JDBC+ApacheSpark+Thymeleaf三剑客,教你如何让Java在EDW中将“数据沼泽”炼成“报告神器”!从“数
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- Python 工程师迈向大数据时代: Hadoop 与 Spark 框架深度解析与实战指南
清水白石008
pythonPython题库大数据pythonhadoop
Python工程师迈向大数据时代:Hadoop与Spark框架深度解析与实战指南引言亲爱的Python工程师们,欢迎来到大数据时代!在这个数据驱动的时代,海量数据如同奔腾不息的河流,蕴藏着前所未有的价值。然而,传统的数据处理工具在面对TB甚至PB级别的数据时,往往显得力不从心。如何高效地处理、分析和挖掘这些海量数据,成为了现代软件工程师,特别是Python工程师们必须掌握的关键技能。幸运的是,大数
- 实战Spark从入门到精通(五):Spark开发实操,先搞定Spark集群规划!
元飞聊技术
实战Spark从入门到精通spark大数据分布式linuxcentos
系列文章目录实战Spark从入门到精通(一):一文带你全面了解Spark大数据处理框架实战Spark从入门到精通(二):Spark急速上手,给小白的3分钟入门指南实战Spark从入门到精通(三):深入理解SparkRDD,大数据处理的核心引擎实战Spark从入门到精通(四):揭秘Spark架构,这才是Spark速度快的真正秘密!文章目录系列文章目录前言Spark集群规划,先搞定Spark基础运行环
- 【Spark征服之路-2.9-Spark-Core编程(五)】
RDD行动算子:行动算子就是会触发action的算子,触发action的含义就是真正的计算数据。1.reduce➢函数签名defreduce(f:(T,T)=>T):T➢函数说明聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据valrdd:RDD[Int]=sc.makeRDD(List(1,2,3,4))valreduceResult:Int=rdd.reduce(_+_)printl
- Spark Streaming 原理与代码实例讲解
AI智能应用
AI大模型应用入门实战与进阶Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
SparkStreaming原理与代码实例讲解1.背景介绍1.1实时流数据处理的重要性在当今大数据时代,海量的数据正以前所未有的速度不断产生。传统的批处理模式已经无法满足实时性要求较高的应用场景,如实时推荐、实时欺诈检测等。因此,实时流数据处理技术应运而生,成为大数据领域的研究热点。1.2SparkStreaming的优势SparkStreaming是ApacheSpark生态系统中的一个重要组件
- pyspark底层浅析
lo_single
Sparksparkpython
pyspark底层浅析pyspark简介pyspark是Spark官方提供的API接口,同时pyspark也是Spark中的一个程序。在terminal中输入pyspark指令,可以打开python的shell,同时其中默认初始化了SparkConf和SparkContext在编写Spark应用的.py文件时,可以通过importpyspark引入该模块,并通过SparkConf对Spark的启动
- 方舟自建服务器物品叠加mod,10000倍物品叠加 -90%负重 V280
大奇鸭
方舟自建服务器物品叠加mod
MOD描述---------------------------------------------堆叠MOD增加+10.000(Ammo和Kibble+500)和-90%重量减少当你销毁结构时,物品可以正确堆叠弹弓,钓鱼竿和Jerky工作得很好。香草Engrams适用于砂浆和杵。请阅读说明堆叠mod需要按照mod列表(GameUserSettings.ini)的顺序尽可能高。工艺资源(Spark
- Python大数据处理中有哪些分布式计算框架?如何选择和使用?
代码小狂热者
python开发语言
一、引言随着大数据时代的来临,数据处理和分析已成为企业和个人不可或缺的一部分。Python,作为一种简洁、易读且功能强大的编程语言,在大数据处理领域具有广泛的应用。而在处理大数据时,分布式计算框架的选择和使用至关重要。本文将介绍Python大数据处理中常见的分布式计算框架,并探讨如何根据实际需求进行选择和使用。二、Python大数据处理中的分布式计算框架ApacheSparkApacheSpark
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数