Sorting Algorithm

sorting 应该是最容易被考到的东西,自己老是学了背,背了忘。为了方便复习,这里进行总结

1. Bubble Sort

定义:每两个两个比较,每扫完一次,当前扫过的最大值放在了末尾。

for i = (n-1) to 1
    for j = 0 to i-1
        if(A[j] > A[j+1])
            swap

  Time Complexity:

Best case : O(n) It can occur if the array is already sorted and no swap occurred.

Worse case: O(n^2) 

 

2. Insertion Sort

定义:当前element 的之前所有elements 都已排好序。把当前element 放进之前排好序的数列中的正确位置。(当前的element从后向前比较)

Insertion sort takes advantage of the presorting. It requires fewer comparision than bubble sort

 

 for i = 1 to n -1
        j = i
        while j >0 and A[j] <A[j-1]
            swap(A[j], A[j-1])
            j --;

  Time Complexity:

Best case : O(n)

Worse case:  O(n ^2)

 

3. Merge Sort

定义:把一个数组打散看成一个一个的单独的,然后每两个两个组一组,merge,新的组合再两个两个组一组,merge

Sorting Algorithm_第1张图片

 

# C = output [length = N]
# A 1st sorted half [N/2]
# B 2nd sorted half [N/2]
i = j = 1
for k = 1 to n
    if A[i] < B[j]
        C[k] = A[i]
        i++
    else
        C[k] = B[j]
        j++

  

 

Time Complexity:  O(nlgN)

 

4. Quick sort

定义: 随机选一个pivot( 当然ideally 是 medium), pivot 的左边全是比自己小的数,右边全是比自己大的数

所以有两个指针,一个指头,一个指尾,第一个指针指向第一个elemnt > pivot 的位置, 第二个指针从后往前,指向第一个element 小于pivot的位置

然后swap。如此扫一遍。然后以pivot为界限,array 分为两部分,再分别选一个pivot,继续上面的过程

Quicksort(A as array, low as int, high as int){
    if (low < high){
        pivot_location = Partition(A,low,high)
        Quicksort(A,low, pivot_location)
        Quicksort(A, pivot_location + 1, high)
    }
}
Partition(A as array, low as int, high as int){
     pivot = A[low]
     leftwall = low

     for i = low + 1 to high{
         if (A[i] < pivot) then{
             swap(A[i], A[leftwall])
             leftwall = leftwall + 1
         }
     }
     swap(A[low],A[leftwall])

    return (leftwall)}

  

Time complexity:  O(nlogn)

 

5. Selection Sort

定义: 选到第一小的,跟第一个element swap, 然后选第二小的,跟第二个element swap

SELECTION-SORT(A)
1.	    for j ← 1 to n-1
2.	         smallest ← j
3.         	 for i ← j + 1 to n
4.	                  if A[ i ] < A[ smallest ]
5.                          smallest ← i
6.         	  Exchange A[ j ] ↔ A[ smallest ]

  

Complexity: O(n^2)

 

你可能感兴趣的:(Sorting Algorithm)