从这篇文章开始介绍图相关的算法,这也是Algorithms在线课程第二部分的第一次课程笔记。 图的应用很广泛,也有很多非常有用的算法,当然也有很多待解决的问题,根据性质,图可以分为无向图和有向图。本文先介绍无向图,后文再介绍有向图。 之所以要研究图,是因为图在生活中应用比较广泛:
图是若干个顶点(Vertices)和边(Edges)相互连接组成的。边仅由两个顶点连接,并且没有方向的图称为无向图。 在研究图之前,有一些定义需要明确,下图中表示了图的一些基本属性的含义,这里就不多说明。
在研究图之前,我们需要选用适当的数据结构来表示图,有时候,我们常被我们的直觉欺骗,如下图,这两个其实是一样的,这其实也是一个研究问题,就是如何判断图的形态。
要用计算机处理图,我们可以抽象出以下的表示图的API:
Graph的API的实现可以由多种不同的数据结构来表示,最基本的是维护一系列边的集合,如下:
还可以使用邻接矩阵来表示:
也可以使用邻接列表来表示:
由于采用如上方式具有比较好的灵活性,采用邻接列表来表示的话,可以定义如下数据结构来表示一个Graph对象。
1 public class Graph 2 { 3 private readonly int verticals; 4 //顶点个数 5 private int edges; 6 //边的个数 7 private List<int>[] adjacency; 8 //顶点联接列表 9 10 public Graph(int vertical) 11 { 12 this.verticals = vertical; 13 this.edges = 0; 14 adjacency=new List<int>[vertical]; 15 for (int v = 0; v < vertical; v++) 16 { 17 adjacency[v]=new List<int>(); 18 } 19 } 20 21 public int GetVerticals () 22 { 23 return verticals; 24 } 25 26 public int GetEdges() 27 { 28 return edges; 29 } 30 31 public void AddEdge(int verticalStart, int verticalEnd) 32 { 33 adjacency[verticalStart].Add(verticalEnd); 34 adjacency[verticalEnd].Add(verticalStart); 35 edges++; 36 } 37 38 public List<int> GetAdjacency(int vetical) 39 { 40 return adjacency[vetical]; 41 } 42 }
图也分为稀疏图和稠密图两种,如下图: 在这两个图中,顶点个数均为50,但是稀疏图中只有200个边,稠密图中有1000个边。在现实生活中,大部分都是稀疏图,即顶点很多,但是顶点的平均度比较小。
采用以上三种表示方式的效率如下:
在讨论完图的表示之后,我们来看下在图中比较重要的一种算法,即深度优先算法:
在谈论深度优先算法之前,我们可以先看看迷宫探索问题。下面是一个迷宫和图之间的对应关系: 迷宫中的每一个交会点代表图中的一个顶点,每一条通道对应一个边。
迷宫探索可以采用Trémaux绳索探索法。即:
图示如下:
下面是迷宫探索的一个小动画:
深度优先搜索算法模拟迷宫探索。在实际的图处理算法中,我们通常将图的表示和图的处理逻辑分开来。所以算法的整体设计模式如下:
下面是深度优先的基本代码,我们可以看到,递归调用dfs方法,在调用之前判断该节点是否已经被访问过。
1 { 2 private bool[] marked; 3 //记录顶点是否被标记 4 private int count; 5 //记录查找次数 6 7 private DepthFirstSearch(Graph g, int v) 8 { 9 marked = new bool[g.GetVerticals()]; 10 dfs(g, v); 11 } 12 13 private void dfs(Graph g, int v) 14 { 15 marked[v] = true; 16 count++; 17 foreach (int vertical in g.GetAdjacency(v)) 18 { 19 if (!marked[vertical]) 20 dfs(g,vertical); 21 } 22 } 23 24 public bool IsMarked(int vertical) 25 { 26 return marked[vertical]; 27 } 28 29 public int Count() 30 { 31 return count; 32 } 33 }
试验一个算法最简单的办法是找一个简单的例子来实现。
有了这个基础,我们可以实现基于深度优先的路径查询,要实现路径查询,我们必须定义一个变量来记录所探索到的路径。 所以在上面的基础上定义一个edgesTo变量来后向记录所有到s的顶点的记录,和仅记录从当前节点到起始节点不同,我们记录图中的每一个节点到开始节点的路径。为了完成这一日任务,通过设置edgesTo[w]=v,我们记录从v到w的边,换句话说,v-w是做后一条从s到达w的边。 edgesTo[]其实是一个指向其父节点的树。
1 public class DepthFirstPaths 2 { 3 private bool[] marked; 4 //记录是否被dfs访问过 5 private int[] edgesTo; 6 //记录最后一个到当前节点的顶点 7 private int s; 8 //搜索的起始点 9 10 public DepthFirstPaths(Graph g, int s) 11 { 12 marked = new bool[g.GetVerticals()]; 13 edgesTo = new int[g.GetVerticals()]; 14 this.s = s; 15 dfs(g, s); 16 } 17 18 private void dfs(Graph g, int v) 19 { 20 marked[v] = true; 21 foreach (int w in g.GetAdjacency(v)) 22 { 23 if (!marked[w]) 24 { 25 edgesTo[w] = v; 26 dfs(g,w); 27 } 28 } 29 } 30 31 public bool HasPathTo(int v) 32 { 33 return marked[v]; 34 } 35 36 public Stack<int> PathTo(int v) 37 { 38 39 if (!HasPathTo(v)) return null; 40 Stack<int> path = new Stack<int>(); 41 42 for (int x = v; x!=s; x=edgesTo[x]) 43 { 44 path.Push(x); 45 } 46 path.Push(s); 47 return path; 48 } 49 }
上图中是黑色线条表示 深度优先搜索中,所有定点到原点0的路径, 他是通过edgeTo[]这个变量记录的,可以从右边可以看出,他其实是一颗树,树根即是原点,每个子节点到树根的路径即是从原点到该子节点的路径。 下图是深度优先搜索算法的一个简单例子的追踪。
通常我们更关注的是一类单源最短路径的问题,那就是给定一个图和一个源S,是否存在一条从s到给定定点v的路径,如果存在,找出最短的那条(这里最短定义为边的条数最小) 深度优先算法是将未被访问的节点放到一个堆中(stack),虽然在上面的代码中没有明确在代码中写stack,但是 递归 间接的利用递归堆实现了这一原理。 和深度优先算法不同, 广度优先是将所有未被访问的节点放到了队列中。其主要原理是:
广度优先是以距离递增的方式来搜索路径的。
1 class BreadthFirstSearch 2 { 3 private bool[] marked; 4 private int[] edgeTo; 5 private int sourceVetical; 6 //Source vertical 7 8 public BreadthFirstSearch(Graph g, int s) 9 { 10 marked=new bool[g.GetVerticals()]; 11 edgeTo=new int[g.GetVerticals()]; 12 this.sourceVetical = s; 13 bfs(g, s); 14 } 15 16 private void bfs(Graph g, int s) 17 { 18 Queue<int> queue = new Queue<int>(); 19 marked[s] = true; 20 queue.Enqueue(s); 21 while (queue.Count()!=0) 22 { 23 int v = queue.Dequeue(); 24 foreach (int w in g.GetAdjacency(v)) 25 { 26 if (!marked[w]) 27 { 28 edgeTo[w] = v; 29 marked[w] = true; 30 queue.Enqueue(w); 31 } 32 } 33 } 34 } 35 36 public bool HasPathTo(int v) 37 { 38 return marked[v]; 39 } 40 41 public Stack<int> PathTo(int v) 42 { 43 if (!HasPathTo(v)) return null; 44 45 Stack<int> path = new Stack<int>(); 46 for (int x = v; x!=sourceVetical; x=edgeTo[x]) 47 { 48 path.Push(x); 49 } 50 path.Push(sourceVetical); 51 return path; 52 } 53 54 }
广度优先算法的搜索步骤如下:
广度优先搜索首先是在距离起始点为1的范围内的所有邻接点中查找有没有到达目标结点的对象,如果没有,继续前进在距离起始点为2的范围内查找,依次向前推进。
本文简要介绍了无向图中的深度优先和广度优先算法,这两种算法时图处理算法中的最基础算法,也是后续更复杂算法的基础。其中图的表示,图算法与表示的分离这种思想在后续的算法介绍中会一直沿用,下文将讲解无向图中深度优先和广度优先的应用,以及利用这两种基本算法解决实际问题的应用。
转自:http://blog.jobbole.com/79314/