- MongoDB在Spring商城用户行为记录中的应用
小小初霁
mongodbspring数据库
一、MongoDB的优势灵活Schema用户行为数据结构多变(如点击、搜索、下单),MongoDB的文档模型无需固定字段,适应快速迭代。高吞吐写入支持批量插入,适合高并发场景(如秒杀活动的用户操作记录)。复杂查询优化支持聚合管道、地理空间查询、全文索引,便于多维分析。水平扩展通过分片(Sharding)应对海量数据存储。二、用户行为数据建模1.基础行为记录集合(如user_actions){"us
- 多语言环境全支持的面板有哪些?
开源软件
多语言环境全支持的面板有哪些?以Websoft9为例在全球化技术协作与跨国业务部署的背景下,用户对服务器管理工具的跨语言支持需求已从简单的界面翻译,扩展到多语言多环境全支持的深度适配。这一概念不仅要求界面语言的切换能力,更需要覆盖技术部署、本地化服务与区域合规性等多维度需求。本文从技术中立视角,探讨该领域的核心标准与代表性解决方案。一、何为“多语言多环境全支持”?首先了解什么是多语言多环境全支持,
- 数据结构----数组与广义表专题
落春只在无意间
#数据结构数据结构线性代数算法
数组与广义表专题数组的顺序表示和实现前言数组中任意一个元素存储地址的计算一维数组二维数组更一般的二维数组矩阵的压缩存储前言对称矩阵三角矩阵前言上三角对应关系下三角关系三对角矩阵下标对应关系稀疏矩阵前言稀疏矩阵的三元组表示用三元组表示矩阵的转置优化快速转置数组的顺序表示和实现前言在计算机中,内存储器的结构是一维的。用一维的内存来表示多维数组,就必须按照某种次序将数组元素排成一个线性序列。数组中任意一
- TikTok矩阵营销:掀开全球营销新篇章
全球通@安心
矩阵人工智能大数据新媒体运营内容运营用户运营产品运营
在流量为王的时代,TikTok已成为品牌争相进入的核心战场。如何在全球范围内快速抢占市场、吸引潜在客户,是每个品牌的共同课题。TikTok矩阵获客系统凭借其数据驱动、内容矩阵和智能化管理的多维优势,为品牌打开了通往全球增长的大门。数据驱动:让投放更科学TikTok矩阵获客系统的最大亮点是其强大的数据分析能力,通过AI技术深入挖掘用户信息,帮助品牌精准捕捉目标客户。●精准定位用户画像:系统基于年龄、
- 如何将装有tensor的多维list转化为torch.Tensor类型
XAL1
笔记pytorch深度学习python
普通list转tensor:a=[[jforjinrange(5)]foriinrange(3)]A=torch.Tensor(a)print('list=',a)print('typeofa:',type(a))print('typeoftransform:',type(A))结果:可以看到对于不包含tensor的普通list,直接用torch.Tensor就可以进行转换。但是对于包含了tens
- chrome内核大版本升级涉及核心事项
ปรัชญา แค้วคำมูล
chromec++性能优化
Chrome内核(Chromium)大版本升级涉及多个核心事项,需要从技术、兼容性、安全、性能等多维度进行系统规划。以下是关键核心事项及应对策略:1.技术架构调整V8引擎升级:JavaScript引擎优化可能引入新语法支持(如ES新特性)、性能改进或GC机制调整,需验证业务代码兼容性。渲染引擎变更:Blink引擎的渲染逻辑调整可能导致页面布局差异(如CSSFlexbox/Grid实现变化),需全面
- 在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?
玩人工智能的辣条哥
人工智能人工智能LoRA微调
环境:LoRA微调问题描述:在整个大模型LoRA微调中,哪些方法可以提升和优化模型训练后推理效果?解决方案:在LoRA(Low-RankAdaptation)微调大模型后,提升和优化推理效果可以从以下多维度策略入手,涵盖数据、模型架构、训练策略和后处理技术等方面:1.数据优化数据质量与多样性确保微调数据覆盖目标场景的多样性,避免分布偏差。加入领域相关的高质量数据,清洗噪声数据(如重复、矛盾样本)。
- 深度学习:马氏距离
壹十壹
深度学习深度学习人工智能
马氏距离(MahalanobisDistance)是一种用于计算不同维度数据点之间距离的度量方法。它考虑了数据的协方差结构,因此在处理具有相关性的多维数据时更加有效。与欧氏距离不同,马氏距离不仅考虑了各个变量的量纲,还考虑了它们之间的相关性。公式马氏距离计算两个向量(x)和(y)之间的距离,定义为:DM(x,y)=(x−y)TS−1(x−y)\D_M(x,y)=\sqrt{(x-y)^TS^{-1
- C++内存操纵的艺术
longdong7889
后端学习c++java开发语言
C++内存操纵的艺术在C++的混沌宇宙中,指针是打开时空裂缝的密钥。本文将以全新视角解构指针的本质,揭示从堆栈穿梭到多维空间映射的进阶技法,展示现代C++赋予指针的惊人可能性。一、指针本体论:内存的波粒二象性所有指针变量都是量子化的存在,既指向具体内存位置,又携带类型信息波。通过类型系统实验可验证其双重属性:templatevoidquantum_observer(T*ptr){std::cout
- OLAP与OLTP:数据处理系统的两种核心架构
思静鱼
#Mysql-数据库架构
文章目录OLAP和OLTP的主要区别OLAP常见数据库和OLTP常见数据库OLAP是英文OnlineAnalyticalProcessing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。OLAP技术通常涉及到预计算、缓存和查询优化等方面的技术,可用于构建在线分析系统(OLAP系统)。该系统将大量的
- DeepSeek源码解析(2)
白鹭凡
deepseekai
Tensor(张量)的介绍在计算机科学和机器学习领域,“张量”(Tensor)是一个数学概念,它被用来表示多维数组。在大模型(如深度学习模型)中,张量扮演着核心角色,具体来说:数据表示:张量用于表示输入数据、模型参数和中间计算结果。例如,在图像处理中,一张图片可以被表示为一个三维张量(高度、宽度、颜色通道数),而在自然语言处理中,一段文本可以被编码为一系列词向量组成的二维张量(句子长度、词向量维度
- 清华 DeepSeek 1-6 册手册雷霆出击:荡尽 AI 多维迷雾,主掌深度进阶的磅礴新征途
2501_90771647
pdf
清华DeepSeek1-6册手册雷霆出击:荡尽AI多维迷雾,主掌深度进阶的磅礴新征途在人工智能领域风云变幻、技术迭代日新月异的今天,每一次关键知识与技术的革新都可能成为推动行业发展的重要契机。清华DeepSeek1-6册手册如同一道迅猛的雷霆,强势出击,以其强大的知识体系和前沿的技术理念,荡尽AI领域的多维迷雾,引领着众人主掌深度进阶的磅礴新征途。集智成典,铸就AI知识丰碑清华DeepSeek1-
- C语言【进阶篇】之指针——涵盖基础、数组与高级概念
EnigmaCoder
C语言c语言开发语言学习
目录前言指针是什么指针基础内存与地址指针变量指针类型const修饰指针指针运算野指针和assert断言数组与指针数组名的理解使用指针访问数组一维数组传参的本质指针数组✍️高级指针概念二级指针函数指针函数指针数组回调函数qsort的使用与模拟实现⚙️指针与字符串字符指针字符串处理函数(如strlen和sizeof的对比)总结前言大家好!我是EnigmaCoder。本文收录于我的专栏C,感谢您的支持!
- 知识图谱与金融——基于知识图谱的风险监控与决策支持
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介知识图谱(KG)是一种用来表示大量互相关联数据的多维网络结构,它通过三元组(subject-predicate-object)的方式来表述实体之间的关系。它经常被用在文本分析、数据挖掘、推荐系统等领域。而随着金融行业对海量信息数据的需求越来越高,知识图谱技术也越来越受到重视。实际上,知识图谱已经成为构建和处理金融知识的重要工具之一。本文将探讨知识图谱在金融中的应
- golang中实现LRU-K算法(附带单元测试)
我的鱼干呢w
golang算法开发语言lrulru-k
LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。LR
- 全球首款通用AI Agent产品Manus深度分析报告
AndrewHZ
深度学习新浪潮算法AI智能体agent多模态大模型语言模型深度学习
发布日期:2025年3月6日撰写背景:Manus由Monica.im团队开发,作为全球首款通用Agent(自主智能体),其技术突破与市场反响引发广泛关注。本报告从技术、应用场景、行业影响及挑战等多维度进行分析。一、Manus的核心技术与产品定位1.1定义与技术突破核心定义:Manus是首个能够独立思考、系统规划并自动执行复杂任务的通用型AIAgent。与传统AI助手(如Siri、ChatGPT)不
- 基于pandas的哪吒2电影评论数据分析
2302_80651048
数据分析大数据数据挖掘
一、项目背景《哪吒2》作为国产动画电影的续作,凭借前作积累的口碑与IP效应,上映后引发广泛讨论。为深入理解观众对影片的真实反馈,挖掘市场评价中的关键信息,本项目基于电影评论数据集,从评分、情感倾向、地域分布、时间趋势等多维度展开分析,旨在为电影制作方、宣发团队及行业研究者提供数据驱动的决策支持。二、分析目标观众评价洞察:解析评分分布与情感倾向,识别影片的核心优势与争议点。用户行为分析:探索评论时间
- 没有最好的,只有最合适的:重新认识测试工具的价值
测试者家园
软件测试测试开发和测试质量效能测试工具软件测试人工智能智能化测试自动化测试自主化测试
用ChatGPT做软件测试在软件测试领域,关于“测试工具是否有好坏之分”的问题常常引发热议。一方面,经验丰富的测试专家通常有自己偏爱的工具和方法,另一方面,新手常困惑于琳琅满目的测试工具库,渴望寻找“最好”的工具。然而,测试工具真的有绝对的好坏之分吗?本文将从多维度剖析这个问题,旨在帮助读者开阔视野,重新思考测试工具的选择与价值。一、工具好坏的判断标准:适用性胜于绝对性1.1目标导向性:工具的价值
- 介绍 TensorFlow 的基本概念和使用场景。
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
TensorFlow是一个由谷歌开发的开源机器学习框架,广泛应用于深度学习领域。它提供了一个灵活的平台,可以用于构建各种机器学习模型,包括神经网络。TensorFlow的基本概念和使用场景如下:张量(Tensor):TensorFlow中的基本数据结构就是张量,可以简单理解为多维数组。张量可以是标量(0维张量)、向量(1维张量)、矩阵(2维张量)等。在TensorFlow中,所有数据都以张量的形式
- Kimball维度模型之数据仓库灵魂总线架构
ByteCodeLabs
维度数据仓库设计数据仓库架构
目录一总线架构(BusArchitecture)1总线矩阵(BusMatrix)2Mapping文档二一致性维度(ConformedDimension)三一致性事实(ConformedFact)在数据仓库领域,深刻理解基本概念是确立强大数据管理体系的关键。数据仓库作为一个庞大而复杂的系统,其核心概念涉及多维体系结构、总线架构等关键要素。首要的是理解数据仓库的架构,例如Multidimensiona
- 电商智能客服实战(三)-需求感知模块具体实现
power-辰南
企业级AI项目实战人工智能NERNLU自然语言AIAGENT
电商智能客服实战(一)—概要设计电商智能客服实战(二)需求感知模块模型微调实现一、整体架构设计1.1模块定位需求感知模块作为智能客服系统的前端处理单元,负责对用户输入进行多维度解析,输出结构化语义理解结果,为下游决策引擎提供数据支撑。1.2核心流程图用户输入需求感知模块情感分析NLU意图识别NER实体识别参数提取规划模块AutoGPT生成步骤规则引擎匹配反馈集成工具模块订单查询API工单API知识
- 前有vika维格表后有飞书多维表格,打破传统的项目管理工具!
Eva洞小仙
在vika维格表公测很长一段时间后,飞书多维表格也紧跟其后,开启了飞书多维表格的内测。两者都是为了改变Excel这个传统表格的使用方式,让项目管理变得更加的轻松高效。在传统电子表格的基础上,vika维格表融入了可视化数据、多人在线编辑、低代码技术等丰富强大的功能,让众多”表哥""表姐“告别满天飞的文件传输与沟通不对等的烦恼。作为一款集科技、颜值、性能、实用于一身的多维智能表格,vika维格表还可以
- 飞书即将上线的多维表格和vika维格表有什么区别?
Eva洞小仙
mysql
飞书多维表格还没有正式开放测试,所以无法提供太多比较。但我们可以在此分享下vika维格表的特点,以便为你提供更多的产品选择指引与参考比较。面对一堆杂乱无章的数据,我们时常会借助EXCEL进行整理统计。当误输入数据,EXCEL常常显示「ERROR」的字体,着实令人崩溃。受够了结构固定、无法随意变换的表格,却又不懂得复杂的公式和函数计算,多希望有一款宝藏软件来拯救代码小白!有没有一种表格能简单粗暴快速
- 飞书多维表格+DeepSeek R1:打工人必备的AI神器,效率暴涨1000%![特殊字符]
sherlock__cc
人工智能飞书
导语当飞书多维表格遇上国产最强推理大模型DeepSeekR1,会擦出怎样的火花?本文手把手教你用「零代码」实现批量文案改写、论文精读、视频脚本生成。一、颠覆认知的三大核心优势1.批量处理的工业级效率单次处理1000+条数据,告别传统API逐条调用支持跨表格数据联动(如从CRM系统自动抓取客户需求)实时监控处理进度,失败任务自动重试2.零代码的极简交互无需Python环境配置直接输入自然语言指令(如
- 遗传算法基础讲解
HH予
深度学习
一、遗传算法基础1.什么是遗传算法?一种模拟生物进化过程的优化算法,基于达尔文的“自然选择”和“遗传学理论”。核心思想:通过选择(优胜劣汰)、交叉(基因重组)、变异(基因突变)操作,逐步逼近问题的最优解。2.为什么用遗传算法?适用性强:解决复杂的非线性、多峰、离散或连续优化问题。无需梯度信息:对目标函数的数学性质要求低,适合黑箱优化。全局搜索能力:通过种群并行搜索,避免陷入局部最优,适合多维优化。
- 拉货搬家小程序开发中保障用户隐私和数据安全的方法
ALLSectorSorft
服务器数据库网络微信小程序小程序
拉货搬家小程序开发中保障用户隐私和数据安全的方法在开发拉货搬家类小程序时,保障用户隐私和数据安全需通过多维度技术手段和管理措施协同实现。以下是系统化的解决方案框架及实施要点:一、数据全生命周期加密保护1.存储层加密采用AES256算法对用户身份信息、订单轨迹、支付凭证等敏感字段加密存储,结合盐值(Salt)增强密码学安全性。敏感数据(如身份证号)建议脱敏后存储,例如仅保留部分字段并用哈希值关联业务
- DeepSeek vs Grok vs ChatGPT:大模型三强争霸,谁将引领AI未来?
带上一无所知的我
chatgpt人工智能DeepSeek
DeepSeekvs.Grokvs.ChatGPT:大模型三强争霸,谁将引领AI未来?在人工智能领域,生成式模型的竞争已进入白热化阶段。DeepSeek、Grok和ChatGPT作为三大代表性工具,凭借独特的技术路径和应用优势,正在重塑行业格局。本文将从技术架构、核心功能、应用场景、性能成本等多维度展开深度对比,揭示其背后的竞争逻辑与未来趋势。一、技术架构:从知识图谱到通用智能的演进1.DeepS
- 费曼学习法11 - NumPy 的 “线性代数” 之力:矩阵运算与应用 (应用篇)
修昔底德
Python费曼学习法线性代数学习numpypython人工智能深度学习
第六篇:NumPy的“线性代数”之力:矩阵运算与应用(应用篇)开篇提问:考虑一个实际问题:图像的旋转。当你使用图像编辑软件旋转照片时,背后是什么在驱动图像像素的精确移动?答案是线性代数。图像可以表示为数值矩阵,而旋转、缩放、剪切等图像变换,都可以通过矩阵运算来实现。线性代数不仅是图像处理的基石,也在机器学习、物理模拟、工程计算等众多领域扮演着核心角色。它提供了一套强大的数学工具,用于描述和解决多维
- 【HeadFirst系列之HeadFirst设计模式】第15天之桥接模式:让代码的扩展更优雅!
工一木子
HeadFirst系列HeadFirst设计模式系统设计设计模式桥接模式
桥接模式:让代码的扩展更优雅!在软件开发中,我们经常遇到多维度变化的需求,如果不合理地设计代码结构,随着需求的扩展,代码会变得越来越复杂,难以维护。桥接模式(BridgePattern)就是一种强大的结构型设计模式,能够有效地解耦代码中的抽象部分(Abstraction)和实现部分(Implementation),让它们可以独立变化,提高代码的扩展性和灵活性。在本文中,我们将从实际问题出发,探讨如
- 深度学习day1
孤城laugh
深度学习人工智能笔记学习机器学习
深度学习day11.深度学习与机器学习的区别1.1特征提取方面1.2数据量与计算性能要求1.3算法代表2.深度学习框架之TensorFlow2.1TensorFlow基础2.2TensorFlow基础知识1.**张量(Tensor)**:多维数组、多维列表2.**变量(Variable)**:用于表示程序处理的共享持久状态3.**图与函数**4.**可视化学习(TensorBoard)**:用来展
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C