使用 HTML5, javascript, webrtc, websockets, Jetty 和 OpenCV 实现基于 Web 的人脸识别

这是一篇国外的文章,介绍如何通过 WebRTC、OpenCV 和 WebSocket 技术实现在 Web 浏览器上的人脸识别,架构在 Jetty 之上。

实现的效果包括:

使用 HTML5, javascript, webrtc, websockets, Jetty 和 OpenCV 实现基于 Web 的人脸识别_第1张图片

还能识别眼睛

使用 HTML5, javascript, webrtc, websockets, Jetty 和 OpenCV 实现基于 Web 的人脸识别_第2张图片

人脸识别的核心代码:

页面:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
<div>
     <video id= "live" width= "320" height= "240" autoplay style= "display: inline;" ></video>
     <canvas width= "320" id= "canvas" height= "240" style= "display: inline;" ></canvas>
</div>
  
  <script type= "text/javascript" >
     var video = $( "#live" ).get()[0];
     var canvas = $( "#canvas" );
     var ctx = canvas.get()[0].getContext( '2d' );
  
     navigator.webkitGetUserMedia( "video" ,
             function (stream) {
                 video.src = webkitURL.createObjectURL(stream);
             },
             function (err) {
                 console.log( "Unable to get video stream!" )
             }
     )
  
     timer = setInterval(
             function () {
                 ctx.drawImage(video, 0, 0, 320, 240);
             }, 250);
</script>

后台:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public class FaceDetection {
  
     private static final String CASCADE_FILE = "resources/haarcascade_frontalface_alt.xml" ;
  
     private int minsize = 20 ;
     private int group = 0 ;
     private double scale = 1.1 ;
  
     /**
      * Based on FaceDetection example from JavaCV.
      */
     public byte [] convert( byte [] imageData) throws IOException {
         // create image from supplied bytearray
         IplImage originalImage = cvDecodeImage(cvMat( 1 , imageData.length,CV_8UC1, new BytePointer(imageData)));
  
         // Convert to grayscale for recognition
         IplImage grayImage = IplImage.create(originalImage.width(), originalImage.height(), IPL_DEPTH_8U, 1 );
         cvCvtColor(originalImage, grayImage, CV_BGR2GRAY);
  
         // storage is needed to store information during detection
         CvMemStorage storage = CvMemStorage.create();
  
         // Configuration to use in analysis
         CvHaarClassifierCascade cascade = new CvHaarClassifierCascade(cvLoad(CASCADE_FILE));
  
         // We detect the faces.
         CvSeq faces = cvHaarDetectObjects(grayImage, cascade, storage, scale, group, minsize);
  
         // We iterate over the discovered faces and draw yellow rectangles around them.
         for ( int i = 0 ; i < faces.total(); i++) {
             CvRect r = new CvRect(cvGetSeqElem(faces, i));
             cvRectangle(originalImage, cvPoint(r.x(), r.y()),
                     cvPoint(r.x() + r.width(), r.y() + r.height()),
                     CvScalar.YELLOW, 1 , CV_AA, 0 );
         }
  
         // convert the resulting image back to an array
         ByteArrayOutputStream bout = new ByteArrayOutputStream();
         BufferedImage imgb = originalImage.getBufferedImage();
         ImageIO.write(imgb, "png" , bout);
         return bout.toByteArray();
     }
}

详细的实现细节请阅读英文原文:

http://www.smartjava.org/content/face-detection-using-html5-javascript-webrtc-websockets-jetty-and-javacvopencv

你可能感兴趣的:(使用 HTML5, javascript, webrtc, websockets, Jetty 和 OpenCV 实现基于 Web 的人脸识别)