python-Day5-深入正则表达式--冒泡排序-时间复杂度 --常用模块学习

正则表达式

 
语法:
 
 
 
 
 
 
mport re #导入模块名
 
p = re.compile("^[0-9]")  #生成要匹配的正则对象 , ^代表从开头匹配,[0-9]代表匹配0至9的任意一个数字, 所以这里的意思是对传进来的字符串进行匹配,如果这个字符串的开头第一个字符是数字,就代表匹配上了
 
m = p.match('14534Abc')   #按上面生成的正则对象 去匹配 字符串, 如果能匹配成功,这个m就会有值, 否则m为None<br><br>if m: #不为空代表匹配上了
  print(m.group())    #m.group()返回匹配上的结果,此处为1,因为匹配上的是1这个字符<br>else:<br>  print("doesn't match.")

上面的第2 和第3行也可以合并成一行来写:

m = p.match("^[0-9]",'14534Abc')

效果是一样的,区别在于,第一种方式是提前对要匹配的格式进行了编译(对匹配公式进行解析),这样再去匹配的时候就不用在编译匹配的格式,第2种简写是每次匹配的时候 都 要进行一次匹配公式的编译,所以,如果你需要从一个5w行的文件中匹配出所有以数字开头的行,建议先把正则公式进行编译再匹配,这样速度会快点。

匹配格式

模式 描述
^ 匹配字符串的开头
$ 匹配字符串的末尾。
. 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
[...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'
[^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。
re* 匹配0个或多个的表达式。
re+ 匹配1个或多个的表达式。
re? 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式
re{ n}  
import re
a = '211.222.233.244'
w = re.match("([0-9]{1,3}\.){3}\d{1,3}",a)
print(w.group())

 

re{ n,} 精确匹配n个前面表达式。
re{ n, m} 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式
a| b 匹配a或b
(re) G匹配括号内的表达式,也表示一个组
(?imx) 正则表达式包含三种可选标志:i, m, 或 x 。只影响括号中的区域。
(?-imx) 正则表达式关闭 i, m, 或 x 可选标志。只影响括号中的区域。
(?: re) 类似 (...), 但是不表示一个组
(?imx: re) 在括号中使用i, m, 或 x 可选标志
(?-imx: re) 在括号中不使用i, m, 或 x 可选标志
(?#...) 注释.
(?= re) 前向肯定界定符。如果所含正则表达式,以 ... 表示,在当前位置成功匹配时成功,否则失败。但一旦所含表达式已经尝试,匹配引擎根本没有提高;模式的剩余部分还要尝试界定符的右边。
(?! re) 前向否定界定符。与肯定界定符相反;当所含表达式不能在字符串当前位置匹配时成功
(?> re) 匹配的独立模式,省去回溯。
\w 匹配字母数字
\W 匹配非字母数字
\s 匹配任意空白字符,等价于 [\t\n\r\f].
\S 匹配任意非空字符
\d 匹配任意数字,等价于 [0-9].
\D 匹配任意非数字
\A 匹配字符串开始
\Z 匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串。c
\z 匹配字符串结束
\G 匹配最后匹配完成的位置。
\b 匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。
\B 匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。
\n, \t, 等. 匹配一个换行符。匹配一个制表符。等
\1...\9 匹配第n个分组的子表达式。
\10 匹配第n个分组的子表达式,如果它经匹配。否则指的是八进制字符码的表达式。

  

正则表达式常用5种操作

re.match(pattern, string)     # 从头匹配

re.search(pattern, string)    # 匹配整个字符串,直到找到一个匹配

re.split()            # 将匹配到的格式当做分割点对字符串分割成列表

 

m = re.split("[0-9]", "aaa1bbb2ccc3ddd eel8")
print(m)
----------------------
输出:

['aaa', 'bbb', 'ccc', 'ddd eel', '']

re.findall()          # 找到所有要匹配的字符并返回列表格式

m = re.findall("[0-9]", "aaa1bbb2ccc3ddd eel8")
print(m,type(m))
------------------------------------
输出:
['1', '2', '3', '8'] <class 'list'>

re.sub(pattern, repl, string, count,flag)    # 替换匹配到的字符,count=2 表示只替换两次

 
   
m = re.sub("[0-9]","|", "aaa1bbb2ccc3ddd eel8",count=2)
# m = re.findall("[0-9]", "aaa1bbb2ccc3ddd eel8")
print(m,type(m))
------------------------------ 
输出:
aaa|bbb|ccc3ddd eel
8 <class 'str'>

正则表达式实例

字符匹配

实例 描述
python 匹配 "python".

字符类

实例 描述
[Pp]ython 匹配 "Python" 或 "python"
rub[ye] 匹配 "ruby" 或 "rube"
[aeiou] 匹配中括号内的任意一个字母
[0-9] 匹配任何数字。类似于 [0123456789]
[a-z] 匹配任何小写字母
[A-Z] 匹配任何大写字母
[a-zA-Z0-9] 匹配任何字母及数字
[^aeiou] 除了aeiou字母以外的所有字符
[^0-9] 匹配除了数字外的字符

特殊字符类

实例 描述
. 匹配除 "\n" 之外的任何单个字符。要匹配包括 '\n' 在内的任何字符,请使用象 '[.\n]' 的模式。
\d 匹配一个数字字符。等价于 [0-9]。
\D 匹配一个非数字字符。等价于 [^0-9]。
\s 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。
\w 匹配包括下划线的任何单词字符。等价于'[A-Za-z0-9_]'。
\W 匹配任何非单词字符。等价于 '[^A-Za-z0-9_]'。

re.match与re.search的区别

re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配

冒泡排序
 
 
冒泡排序是对数组的一个排序
将一个不规则的数组按从小到大的顺序进行排序
 1 data = [10,4,33,21,54,3,8,11,5,22,2,1,17,13,6,99,1231,435,634573,45,78,234]
 2 print(data)
 3 #定义循环range(len(data)-1)次
 4 #为了减少循环次数这里定义,range(1,len(data)): 1位起始位置len(data)为结束位置
 5 for j in range(1,len(data)):
 6     #这里range(len(data)-j): 定义为循环一次减少一次
 7     for i in range(len(data)-j):
 8         #如果data[i]虾标位置的4 大于 data[i+1]虾标位置加一,也就是 虾标位置的数值与虾标位置+1的数值相比较
 9         #如果虾标数值大于虾标数值+1
10         if data[i] > data[i+1]:
11             #如果大于为真则将虾标位置+1对应的数值 做一个变量tmp
12             tmp = data[i+1]
13             #把虾标+1位置的数值放在第一个虾标位置
14             data[i+1] = data[i]
15             #把虾标位置的数值替换为 tmp数值
16             data[i] = tmp
17 
18 print(data)
19 ----------------------------------
20 输出:
21 [10, 4, 33, 21, 54, 3, 8, 11, 5, 22, 2, 1, 17, 13, 6]
22 [1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 17, 21, 22, 33, 54]
冒泡排序

 

 
时间复杂度 
(1)时间频度
 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时, T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O(f(n)),O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
 
指数时间
指的是一个问题求解所需要的 计算时间 m( n),依输入数据的大小 而呈 指数成长(即输入数据的数量依 线性成长,所花的时间将会以指数成长)
 
for (i=1; i<=n; i++)
       x++;
for (i=1; i<=n; i++)
     for (j=1; j<=n; j++)
          x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

常数时间

 

若对于一个算法,的上界与输入大小无关,则称其具有常数时间,记作时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

 

对数时间 

若算法的T(n) = O(log n),则称其具有对数时间

常见的具有对数时间的算法有二叉树的相关操作和二分搜索。

对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。

递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

 

线性时间 

如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

 

 

  时间模块:time &datetime  

  随机数模块:random

  系统交互:OS

  sys系统模块

  文件copy相关模块:shutil

  •   json & picle
  •   shelve
  •   xml处理
  •   yaml处理
  •   configparser
  •   hashlib
  •   subprocess
  •   logging模块
 

模块,用一砣代码实现了某个功能的代码集合。 

类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块。

如:os 是系统相关的模块;file是文件操作相关的模块

模块分为三种:

  • 自定义模块
  • 内置标准模块(又称标准库)
  • 开源模块

自定义模块 和开源模块的使用参考 http://www.cnblogs.com/wupeiqi/articles/4963027.html 

 time & datetime模块

 

你可能感兴趣的:(python-Day5-深入正则表达式--冒泡排序-时间复杂度 --常用模块学习)