mport re #导入模块名 p = re.compile("^[0-9]") #生成要匹配的正则对象 , ^代表从开头匹配,[0-9]代表匹配0至9的任意一个数字, 所以这里的意思是对传进来的字符串进行匹配,如果这个字符串的开头第一个字符是数字,就代表匹配上了 m = p.match('14534Abc') #按上面生成的正则对象 去匹配 字符串, 如果能匹配成功,这个m就会有值, 否则m为None<br><br>if m: #不为空代表匹配上了 print(m.group()) #m.group()返回匹配上的结果,此处为1,因为匹配上的是1这个字符<br>else:<br> print("doesn't match.")
上面的第2 和第3行也可以合并成一行来写:
m = p.match("^[0-9]",'14534Abc')
效果是一样的,区别在于,第一种方式是提前对要匹配的格式进行了编译(对匹配公式进行解析),这样再去匹配的时候就不用在编译匹配的格式,第2种简写是每次匹配的时候 都 要进行一次匹配公式的编译,所以,如果你需要从一个5w行的文件中匹配出所有以数字开头的行,建议先把正则公式进行编译再匹配,这样速度会快点。
匹配格式
模式 | 描述 |
---|---|
^ | 匹配字符串的开头 |
$ | 匹配字符串的末尾。 |
. | 匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。 |
[...] | 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k' |
[^...] | 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。 |
re* | 匹配0个或多个的表达式。 |
re+ | 匹配1个或多个的表达式。 |
re? | 匹配0个或1个由前面的正则表达式定义的片段,非贪婪方式 |
re{ n} |
import re a = '211.222.233.244' w = re.match("([0-9]{1,3}\.){3}\d{1,3}",a) print(w.group())
|
re{ n,} | 精确匹配n个前面表达式。 |
re{ n, m} | 匹配 n 到 m 次由前面的正则表达式定义的片段,贪婪方式 |
a| b | 匹配a或b |
(re) | G匹配括号内的表达式,也表示一个组 |
(?imx) | 正则表达式包含三种可选标志:i, m, 或 x 。只影响括号中的区域。 |
(?-imx) | 正则表达式关闭 i, m, 或 x 可选标志。只影响括号中的区域。 |
(?: re) | 类似 (...), 但是不表示一个组 |
(?imx: re) | 在括号中使用i, m, 或 x 可选标志 |
(?-imx: re) | 在括号中不使用i, m, 或 x 可选标志 |
(?#...) | 注释. |
(?= re) | 前向肯定界定符。如果所含正则表达式,以 ... 表示,在当前位置成功匹配时成功,否则失败。但一旦所含表达式已经尝试,匹配引擎根本没有提高;模式的剩余部分还要尝试界定符的右边。 |
(?! re) | 前向否定界定符。与肯定界定符相反;当所含表达式不能在字符串当前位置匹配时成功 |
(?> re) | 匹配的独立模式,省去回溯。 |
\w | 匹配字母数字 |
\W | 匹配非字母数字 |
\s | 匹配任意空白字符,等价于 [\t\n\r\f]. |
\S | 匹配任意非空字符 |
\d | 匹配任意数字,等价于 [0-9]. |
\D | 匹配任意非数字 |
\A | 匹配字符串开始 |
\Z | 匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串。c |
\z | 匹配字符串结束 |
\G | 匹配最后匹配完成的位置。 |
\b | 匹配一个单词边界,也就是指单词和空格间的位置。例如, 'er\b' 可以匹配"never" 中的 'er',但不能匹配 "verb" 中的 'er'。 |
\B | 匹配非单词边界。'er\B' 能匹配 "verb" 中的 'er',但不能匹配 "never" 中的 'er'。 |
\n, \t, 等. | 匹配一个换行符。匹配一个制表符。等 |
\1...\9 | 匹配第n个分组的子表达式。 |
\10 | 匹配第n个分组的子表达式,如果它经匹配。否则指的是八进制字符码的表达式。 |
正则表达式常用5种操作
re.match(pattern, string) # 从头匹配
re.search(pattern, string) # 匹配整个字符串,直到找到一个匹配
re.split() # 将匹配到的格式当做分割点对字符串分割成列表
m = re.split("[0-9]", "aaa1bbb2ccc3ddd eel8") print(m)
----------------------
输出:
['aaa', 'bbb', 'ccc', 'ddd eel', '']
re.findall() # 找到所有要匹配的字符并返回列表格式
m = re.findall("[0-9]", "aaa1bbb2ccc3ddd eel8") print(m,type(m)) ------------------------------------ 输出: ['1', '2', '3', '8'] <class 'list'>
re.sub(pattern, repl, string, count,flag) # 替换匹配到的字符,count=2 表示只替换两次
m = re.sub("[0-9]","|", "aaa1bbb2ccc3ddd eel8",count=2)
# m = re.findall("[0-9]", "aaa1bbb2ccc3ddd eel8")
print(m,type(m))
------------------------------
输出:
aaa|bbb|ccc3ddd eel8 <class 'str'>
实例 | 描述 |
---|---|
python | 匹配 "python". |
实例 | 描述 |
---|---|
[Pp]ython | 匹配 "Python" 或 "python" |
rub[ye] | 匹配 "ruby" 或 "rube" |
[aeiou] | 匹配中括号内的任意一个字母 |
[0-9] | 匹配任何数字。类似于 [0123456789] |
[a-z] | 匹配任何小写字母 |
[A-Z] | 匹配任何大写字母 |
[a-zA-Z0-9] | 匹配任何字母及数字 |
[^aeiou] | 除了aeiou字母以外的所有字符 |
[^0-9] | 匹配除了数字外的字符 |
实例 | 描述 |
---|---|
. | 匹配除 "\n" 之外的任何单个字符。要匹配包括 '\n' 在内的任何字符,请使用象 '[.\n]' 的模式。 |
\d | 匹配一个数字字符。等价于 [0-9]。 |
\D | 匹配一个非数字字符。等价于 [^0-9]。 |
\s | 匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。 |
\S | 匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。 |
\w | 匹配包括下划线的任何单词字符。等价于'[A-Za-z0-9_]'。 |
\W | 匹配任何非单词字符。等价于 '[^A-Za-z0-9_]'。 |
re.match只匹配字符串的开始,如果字符串开始不符合正则表达式,则匹配失败,函数返回None;而re.search匹配整个字符串,直到找到一个匹配
1 data = [10,4,33,21,54,3,8,11,5,22,2,1,17,13,6,99,1231,435,634573,45,78,234] 2 print(data) 3 #定义循环range(len(data)-1)次 4 #为了减少循环次数这里定义,range(1,len(data)): 1位起始位置len(data)为结束位置 5 for j in range(1,len(data)): 6 #这里range(len(data)-j): 定义为循环一次减少一次 7 for i in range(len(data)-j): 8 #如果data[i]虾标位置的4 大于 data[i+1]虾标位置加一,也就是 虾标位置的数值与虾标位置+1的数值相比较 9 #如果虾标数值大于虾标数值+1 10 if data[i] > data[i+1]: 11 #如果大于为真则将虾标位置+1对应的数值 做一个变量tmp 12 tmp = data[i+1] 13 #把虾标+1位置的数值放在第一个虾标位置 14 data[i+1] = data[i] 15 #把虾标位置的数值替换为 tmp数值 16 data[i] = tmp 17 18 print(data) 19 ---------------------------------- 20 输出: 21 [10, 4, 33, 21, 54, 3, 8, 11, 5, 22, 2, 1, 17, 13, 6] 22 [1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 17, 21, 22, 33, 54]
for (i=1; i<=n; i++) x++; for (i=1; i<=n; i++) for (j=1; j<=n; j++) x++;
第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
常数时间
若对于一个算法,的上界与输入大小无关,则称其具有常数时间,记作时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。
对数时间
若算法的T(n) = O(log n),则称其具有对数时间
常见的具有对数时间的算法有二叉树的相关操作和二分搜索。
对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。
递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。
线性时间
如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。
时间模块:time &datetime
随机数模块:random
系统交互:OS
sys系统模块
文件copy相关模块:shutil
模块,用一砣代码实现了某个功能的代码集合。
类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合。而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块。
如:os 是系统相关的模块;file是文件操作相关的模块
模块分为三种:
自定义模块 和开源模块的使用参考 http://www.cnblogs.com/wupeiqi/articles/4963027.html
time & datetime模块