此博文主要讲述了构造二叉树的两种方法:
1、通过先序和中序构造出二叉树( 来自leetCode OJ上的 题目:Construct Binary Tree from Preorder and Inorder Traversal )
2、通过后序和中序构造出二叉树( 来自leetCode OJ上的 题目:Construct Binary Tree from Inorder and Postorder Traversal)
这两题的解法类似,下面我来详细讲下如何通过
二叉树的先序序列和中序序列来构造出二叉树,至于后序序列和中序序列就不着重讲了哈!
题目:
Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
题目要求我们通过中序序列和先序序列来构造出这棵二叉树,返回它的根节点。
那么我们先模拟随便画出一棵二叉树来,再把它的先序,中序,后序全部写出来
int[] preOrder = new int[]{7,-10,-4,3,-1,2,-8,11};
int[] postOrder = new int[]{-4,-1,3,-10,11,-8,2,7};
int[] inOrder = new int[]{-4,-10,3,-1,7,11,-8,2};
解题思路:
如上,我们得到了一棵二叉树的先序序列preOrder = {7,-10,-4,3,-1,2,-8,11};和中序序列inOrder = {-4,-10,3,-1,7,11,-8,2};
我们想要构建出这棵二叉树,那么我采用递归的方法来确定出每个结点和结点间的关系
通过先序序列{7,-10,-4,3,-1,2,-8,11},我们可以知道,第一个结点7肯定是二叉树的根结点,而第二个结点-10,有可能是根结点的左子树的根结点,也有可能是右子树的根结点(具体得看中序序列中的 "7" 左边是否还有其他的结点值,或者右边是否还有其他的结点值),居然这个大问题可以被分解成小问题,我们选择采用递归的方式来解决这个问题
1. 首先通过preOrder序列,得到根结点root!
2. 递归求出root的左子树
3. 递归求出root的右子树
4. 将左子树的根结点赋值给root.left, 右子树的根结点赋值给root.right
AC代码(Construct Binary Tree from Preorder and Inorder Traversal ):
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode buildTree(int[] preorder, int[] inorder) { if (preorder.length == 0 || inorder.length == 0) return null; int len = inorder.length; return createTreeNode(preorder,inorder,0,len-1,0); } public TreeNode createTreeNode(int[] preorder, int[] inorder, int inLeft, int inRight, int preIndex){ //判断是否为叶子结点 if (inLeft == inRight){ TreeNode node = new TreeNode(inorder[inLeft]); node.left = null; node.right = null; return node; } //把preOrder中当前下标preIndex指向的val取出 int val = preorder[preIndex]; int findIndex = inLeft; //找到val在inOrder中的位置(该子树的根节点位置) while (findIndex != inRight && val != inorder[findIndex]){ findIndex++; } TreeNode leftNode; TreeNode rightNode; //判断是否有左右子树,并创建出相应的左右子树(如果val在inOrder中的位置下标等于inLeft,表明这个子树是没有左子树的,而val在inOrder中的位置下标等于inRight,表明这个子树没有右子树) if (findIndex == inLeft){ leftNode = null; }else{ leftNode = createTreeNode(preorder,inorder,inLeft,findIndex-1,++preIndex); } if (findIndex == inRight){ rightNode = null; }else{ rightNode = createTreeNode(preorder,inorder,findIndex+1,inRight,++preIndex); } //把左右子树赋值给root结点 TreeNode root = new TreeNode(val); root.left = leftNode; root.right = rightNode; return root; } }
AC代码(Construct Binary Tree from Inorder and Postorder Traversal)
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { private int postIndex; public TreeNode buildTree(int[] inorder,int[] postorder) { if (postorder.length == 0 || inorder.length == 0) return null; int len = inorder.length; postIndex = postorder.length - 1; return createTreeNode(postorder,inorder,0,len-1); } public TreeNode createTreeNode(int[] inorder, int[] postorder, int inLeft, int inRight){ if (inLeft == inRight){ TreeNode node = new TreeNode(inorder[inLeft]); node.left = null; node.right = null; return node; } int val = postorder[postIndex]; int findIndex = inLeft; while (findIndex != inRight && val != inorder[findIndex]){ findIndex++; } TreeNode leftNode; TreeNode rightNode; if (findIndex == inRight){ rightNode = null; }else{ --postIndex; rightNode = createTreeNode(inorder,postorder,findIndex+1,inRight); } if (findIndex == inLeft){ leftNode = null; }else{ --postIndex; leftNode = createTreeNode(inorder,postorder,inLeft,findIndex-1); } TreeNode root = new TreeNode(val); root.left = leftNode; root.right = rightNode; return root; } }
博主算法方面比较薄弱,写得不好,欢迎大家给我留言哈!!!