- 改进候鸟优化算法之二:基于混沌映射的候鸟优化算法(MBO-CM)
搏博
算法人工智能r语言开发语言算法策略模式
基于混沌映射的候鸟优化算法(MigratingBirdsOptimizationbasedonChaoticMapping,MBO-CM)是一种结合了混沌映射与候鸟优化算法(MigratingBirdsOptimization,MBO)的优化方法。一、候鸟优化算法(MBO)简介候鸟优化算法是一种自然启发的元启发式算法,由Duman等人于2011年(也有说法为2012年)提出。该算法模拟候鸟在迁徙过
- Nacos负载均衡
平凡人笔记
平凡人笔记负载均衡java运维
常见的负载均衡策略随机、hash、轮询、权重、最小连接数、最快响应速度适用场景1、在短连接中因为连接快速建立销毁因为数据延时容易造成堆积效应,随机、hash、轮询、权重四种方式大致能够保持整体是均衡的,服务端重启也不会影响整体均衡2、最小连接、最快响应速度是有状态的算法,因为数据延时容易造成堆积效应3、长连接,连接会一直保持,断连后需要重新选择一个新的服务节点,当服务重启后,最终连接数会出现不均衡
- SQL实现md5加密方法
m0_74824002
面试学习路线阿里巴巴sql数据库
1.MD5加密概述MD5(MessageDigestAlgorithm5)是一种广泛使用的哈希算法,它将输入的字符串(或数据)转换为固定长度的128位(16字节)哈希值。MD5的主要特点是:不可逆性:MD5是一种单向哈希算法,这意味着你无法从MD5哈希值还原出原始数据。输出固定长度:无论输入数据的长度如何,MD5输出的哈希值始终是32个字符的十六进制数(128位)。碰撞性:虽然MD5很长时间被广泛
- 2025数学建模美赛B题完整建模思路——管理可持续旅游业
鹿鹿数模
数学建模
2025MCM问题B:管理可持续旅游业以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容,欢迎从文末小卡片处加群获取。赛题分析以下内容包括三个主要部分:(1)题目的中文翻译(2)对题目的整体分析与思路综述(3)对题目要求的逐项详细分析与求解思路。本文的撰写将综合运用多元的数学模型、算法以及机器学习/深度学习的方法,并在必要时给出题外假设与可行的创新性思路,以期为参赛者提供较为系
- AcWing算法基础课笔记——高斯消元
SharkWeek.
AcWing算法笔记数论
高斯消元用来求解方程组a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bna_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x
- 算法练习——函数、递归和递推
SharkWeek.
算法练习算法递归深度优先c++
在此记录一些有关函数、递归和递推的问题。所有题目均来自洛谷的题单能力提升综合题单Part1入门阶段-题单-洛谷|计算机科学教育新生态(luogu.com.cn)(实际上都没有用递推做)[NOIP2001普及组]数的计算题目描述给出正整数nnn,要求按如下方式构造数列:只有一个数字nnn的数列是一个合法的数列。在一个合法的数列的末尾加入一个正整数,但是这个正整数不能超过该数列最后一项的一半,可以得到
- C#在软件定义无线电(SDR)开发中的革命性应用——从概念到实践的全面解析
墨夶
C#学习资料2c#网络开发语言
在这个数字化与无线通信飞速发展的时代,软件定义无线电(SoftwareDefinedRadio,SDR)作为一项关键技术,正在改变着我们对传统无线电系统的认知。它不仅允许工程师们以软件的方式实现复杂的信号处理算法,而且还为各种新型无线应用提供了无限可能。然而,要真正驾驭这项技术并非易事,尤其是在选择合适的编程语言时更是如此。今天,我们将聚焦于C#这一强大而灵活的语言,探讨它是如何成为SDR开发的理
- GFPGAN - 腾讯开源的图形修复算法修复算法
小众AI
AI开源开源算法人工智能
GFPGAN是腾讯开源的人脸修复算法,它利用预先训练好的面部修复算法,并且封装了各种丰富多样的先验因素进行盲脸(blindface)修复,可以对老照片进行很好的修复。35800Stars5900Forks345Issues11贡献者ApacheLicensePython语言代码:https://github.com/TencentARC/GFPGAN更多AI开源软件:AI开源-小众AI主要功能盲修
- 二分查找算法
mcharleylei
算法python
目录1、概述2、代码实现(1)递归实现(2)非递归实现1、概述二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 算法随笔_21:字符的最短距离
程序趣谈
算法
上一篇:算法随笔_20:区间子数组个数-CSDN博客=====================题目描述如下:给你一个字符串s和一个字符c,且c是s中出现过的字符。返回一个整数数组answer,其中answer.length==s.length且answer[i]是s中从下标i到离它最近的字符c的距离。两个下标i和j之间的距离为abs(i-j),其中abs是绝对值函数。示例1:输入:s="lovel
- 【优选算法】10----无重复字符的最长子串
Rhzkp
算法c++leetcode
---------------------------------------begin---------------------------------------题目解析:看到这一类题目,有没有那种一眼就感觉时要用到滑动窗口的感觉,铁子们?讲解算法原理:方法一:暴力解法:简单粗暴的地毯式搜索暴力解法就像一个没有什么技巧的探险家,直接把所有可能的子串都找出来,然后一个一个检查是不是有重复字符,最
- 【第四天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-两种常见的递归算法(持续更新)
Long_poem
python算法开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Python数据结构与算法的详细介绍1.Python中的常用的搜索算法2.两种常见的递归算法3.两种详细的递归算法代码1)斐波那契数列2)阶乘总结前言提示:这里可以添加本文要记录的大概内容:第一天Python数据结构与算法的详细介绍第二天五种常见的排序算法第三天两种常见的搜索算法第四天两种常见的递归算法第五天一种常见的
- AlphaFold2的思路总结(十五)
xiaofengzihhh
蛋白质结构预测深度学习人工智能神经网络
2021SC@SDUSC这学期的代码分析工作接近尾声了,我想简单总结一下AlphaFold2的总体思路 具体来看,AlphaFold2主要利用多序列比对(MSA),把蛋白质的结构和生物信息整合到了深度学习算法中。它主要包括两个部分:神经网络EvoFormer和结构模块(Structuremodule)。一、EvoFormer 在EvoFormer中,主要是将图网络(Graphnetworks)
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- Python实现itemCF协同过滤推荐算法并计算召回率、准确率、F1分数和覆盖率
计算机软件程序设计
机器学习python推荐算法开发语言
一个完整的Python实现,包括ItemCF协同过滤算法的实现以及召回率、准确率、F1分数和覆盖率等评估指标的计算。将使用Pandas进行数据处理,Scikit-learn进行相似度计算,并编写函数来生成推荐列表和评估模型性能。1.数据准备首先,需要准备数据。假设有一个用户-物品评分矩阵(可以是显式评分或隐式反馈),表示用户对不同酒店的喜好程度。这里可以使用Pandas来处理数据。importpa
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- LeetCode 21. 合并两个有序链表 链表合并 Java实现
Lentr0py
LeetCode算法题leetcode链表java算法数据结构
21.合并两个有序链表21.合并两个有序链表题目来源题目分析题目难度题目标签题目限制解题思路思路:核心算法步骤迭代法代码实现代码解读性能分析复杂度结果测试用例扩展讨论优化写法其他实现总结21.合并两个有序链表题目来源21.合并两个有序链表题目分析将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。题目难度难度:简单题目标签标签:链表题目限制两个链表的节点数目
- redis原理
小哲会嘿魔法
redis数据库缓存
文章目录redis客户端-认识RESP持久化持久化具体实现1.RDB(RedisDataBase)2.AOF(AppendOnlyFile)事务相关命令主从复制拓扑结构同步过程部分复制实时复制哨兵(Sentinel)哨兵选取主节点流程集群数据分片主节点宕机集群扩容缓存缓存更新缓存预热、缓存穿透、缓存雪崩、缓存击穿分布式锁过期时间校验IdLua脚本watchdog(看门狗)Redlock算法redi
- OpenCV实战技术应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
10.0角点检测应用技术实现,使用SIFT算法进行特征点检测并绘制。结果:实现过程:解析过程:1.导入模块:importcv2:导入opencv库,用于图像处理操作,包括图像读取、特征提取、图像绘制、匹配等。importnumpyasnp:导入numpy库,用于处理数组数据,在特征描述符的存储和处理中可能会用到。2.函数定义:sift_tz():功能:使用SIFT算法进行特征点检测并绘制。实现:i
- 「Py」基础语法篇 之 Python缩进规则
何曾参静谧
「Py」Python程序设计数据库
✨博客主页何曾参静谧的博客(✅关注、点赞、⭐收藏、转发)全部专栏(专栏会有变化,以最新发布为准)「Win」Windows程序设计「IDE」集成开发环境「UG/NX」BlockUI集合「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」NX定制开发「Py」Python程序设计「Math」探秘数学世界「PK」Pa
- 基于Python的开源量化交易框架:构建你的量化投资策略
ShAutoit
python开发语言
量化投资是一种利用数学和统计模型来进行投资决策的方法,它将大量的金融数据与算法相结合,以识别交易机会并执行交易。Python作为一种功能强大且易于使用的编程语言,为开发和实施量化交易策略提供了很好的支持。本文将介绍基于Python的开源量化交易框架,帮助你构建自己的量化投资策略。数据获取和处理在量化投资中,数据是至关重要的。你需要获取和处理市场数据,包括股票价格、指数数据、财务数据等。在Pytho
- 使用Python实现并行计算算法:效率提升的利器
Echo_Wish
Python进阶python算法开发语言
在处理大规模数据和计算密集型任务时,单线程的处理方式往往显得力不从心。并行计算作为一种提升计算效率的重要手段,能够充分利用多核处理器的优势,加速任务的完成。Python作为一种灵活且功能强大的编程语言,提供了丰富的并行计算工具。本文将详细介绍如何使用Python实现并行计算算法,并通过具体代码示例展示其实现过程。项目概述本项目旨在通过Python实现一个并行计算算法,展示如何利用Python的多线
- Kafka 消息存储与销毁机制
AI天才研究院
大数据AI人工智能计算kafkawpf分布式
Kafka消息存储与销毁机制文章目录Kafka消息存储与销毁机制1.背景介绍1.1什么是Kafka1.2Kafka的基本概念解释2.核心概念与联系2.1消息存储机制2.2消息销毁机制2.3分区与副本机制3.核心算法原理具体操作步骤3.1消息存储过程3.2消息消费过程3.3消息销毁过程3.4分区副本同步过程4.数学模型和公式详细讲解举例说明4.1消息存储模型4.2消息销毁模型4.3分区副本同步模型5
- ROS 实时修改动态参数的方法
jucat
ROS机器人自动驾驶linux
参考HokuyoLaser动态参数设置wikiipa覆盖算法源码背景工作中需要在C++程序运行过程中,根据场景开关costmap2d的障碍物感知图层以及膨胀图层。在yaml启动参数配置中加载障碍物层插件和膨胀层插件,但是关闭它们的更新,大概如下:global_costmap:global_frame:maprobot_base_frame:base_footprint...plugins:-{na
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- P3978 [TJOI2015] 概率论
洛谷之蒟蒻
概率论
题目描述为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?判断两棵树是否同构的伪代码如下:算法1Check(T1,T2)Require:两棵树的节点ifT1=nullorT2=nullthenreturnT1=nullandT2=nullelsereturnCheck(T1→le
- 华为OD机试E卷 --连续字母长度--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024javapython华为odjavascriptc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述给定一个字符串,只包含大写字母,求在包含同一字母的子串中,长度第k长的子串的长度,相同字母只取最长的那个子串。输入描述第一行有一个子串(1<长度<=100),只包含大写字母。第二行为k的值输出描述输出连续出现次数第k多的字母的次数。用例输入AAAAHHHBBCDHHHH3输出
- Feed流
baiyinaaaaa
后端
是一种呈现内容给用户并持续更新的方式,用户可以选择订阅多个资源,网站提供feed地址,用户将feed网址等级到阅读器中,在阅读器里形成的聚合页就是feed流。现在流行的feed类似NewsFeed:订阅源不再是某个内容,而是生产内容的人或团体内容不严格按照timeline,广泛使用智能feed排序,新的feed流可以不在需要主动搜索,而是主动根据推送算法呈现内容,极大的增加了用户粘性和使用时间,F
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">