最简Trie的实现

最简Trie的实现

无附加功能,主要提供insert,search和prefixsearch。具体原理请参见http://en.wikipedia.org/wiki/Trie

先来看下trie树的样子:

图片来源wikipedia

   1: public class Node {
   2:     char content;
   3:     boolean marker;
   4:     Collection<Node> child;
   5:     boolean visited;
   6:  
   7:     public Node(char c) {
   8:         child = new LinkedList<Node>();
   9:         marker = false;
  10:         content = c;
  11:         visited = false;
  12:     }
  13:  
  14:     public Node subNode(char c) {
  15:         if (child != null) {
  16:             for (Node eachChild : child) {
  17:                 if (eachChild.content == c) {
  18:                     return eachChild;
  19:                 }
  20:             }
  21:         }
  22:         return null;
  23:     }
  24: }

Node是一个trie树的节点,其中content表示节点对应的字符,marker表示是否该节点是否是一个单词的完结节点。child顾名思义是节点的所有子节点集合,visited在遍历时需要,表示是否访问过。

具体trie:

   1: public class Trie {
   2:     private Node root;
   3:  
   4:     public Trie() {
   5:         root = new Node(' ');
   6:     }
   7:  
   8:     public void insert(String s) {
   9:         Node current = root;
  10:         if (s.length() == 0) // For an empty character
  11:             current.marker = true;
  12:         for (int i = 0; i < s.length(); i++) {
  13:             Node child = current.subNode(s.charAt(i));
  14:             if (child != null) {
  15:                 current = child;
  16:             } else {
  17:                 current.child.add(new Node(s.charAt(i)));
  18:                 current = current.subNode(s.charAt(i));
  19:             }
  20:             // Set marker to indicate end of the word
  21:             if (i == s.length() - 1)
  22:                 current.marker = true;
  23:         }
  24:     }
  25:  
  26:     public boolean search(String s) {
  27:         Node current = root;
  28:         while (current != null) {
  29:             for (int i = 0; i < s.length(); i++) {
  30:                 if (current.subNode(s.charAt(i)) == null)
  31:                     return false;
  32:                 else
  33:                     current = current.subNode(s.charAt(i));
  34:             }/*
  35:              * This means that a string exists, but make sure its a word by
  36:              * checking its 'marker' flag
  37:              */
  38:             if (current.marker == true)
  39:                 return true;
  40:             else
  41:                 return false;
  42:         }
  43:         return false;
  44:     }
  45:  
  46:     public List<String> searchPrefix(String s) {
  47:  
  48:         Node current = root;
  49:         if (current == null) {
  50:             return null;
  51:         }
  52:         List<String> list = new ArrayList<String>();
  53:         Node endNode = null;
  54:         StringBuilder endSB = new StringBuilder();
  55:         for (int i = 0; i < s.length(); i++) {
  56:             if (current.subNode(s.charAt(i)) == null) {
  57:                 endNode = current;
  58:                 break;
  59:             } else {
  60:                 current = current.subNode(s.charAt(i));
  61:                 endNode = current;
  62:                 endSB.append(endNode.content);
  63:             }
  64:         }
  65:         if (endNode == null) {
  66:             return null;
  67:         }
  68:         if (endNode.marker == true) {//  found as a word
  69:             list.add(endSB.toString());
  70:         }
  71:         // depth-first search the sub branch
  72:         Stack<Node> stack = new Stack<Node>();
  73:         stack.push(endNode);
  74:         while (!stack.isEmpty()) {
  75:             Node cur = stack.peek();
  76:             int needCount = cur.child.size();
  77:             for (Node node : cur.child) {
  78:                 if (!node.visited) {
  79:                     node.visited = true;
  80:                     stack.push(node);
  81:                     endSB.append(node.content);
  82:                     if (node.marker) {
  83:                         list.add(endSB.toString());
  84:                     }
  85:                     break;
  86:                 } else {
  87:                     needCount--;
  88:                 }
  89:             }
  90:             if (needCount == 0) {
  91:                 stack.pop();
  92:                 endSB.deleteCharAt(endSB.length()-1);
  93:             }
  94:         }
  95:  
  96:         return list;
  97:     }
  98:  
  99:     public static void main(String[] args) {
 100:         Trie trie = new Trie();
 101:         trie.insert("ball");
 102:         trie.insert("bat");
 103:         trie.insert("dead");
 104:         trie.insert("do");
 105:         trie.insert("doll");
 106:         trie.insert("dork");
 107:         trie.insert("dorm");
 108:         trie.insert("send");
 109:         trie.insert("sense");
 110:         List<String> list = trie.searchPrefix("d");
 111:         for (String s : list) {
 112:             System.out.println(s);
 113:         }
 114:     }
 115: }

其中构建树的时候需要不断的将新词insert到结构中,search可以接受一个词作为输入,返回这个词是否在词典中。如果只是search来判断是否存在,那么hashmap更好的解决这个问题。trie树的最大强项是利用前缀检索,比如想知道一个词典中以固定前缀开始的词有多少,那么prefixsearch可以满足需求。

这棵树可扩展的地方太多太多,现有代码只是一个铺垫,对于任何处理字符的需求,扩展属于自己的特定业务场景的trie是个很不错的选择。

本文的实现是基于http://www.technicalypto.com/2010/04/trie-in-java.html这里实现的,trie树截图也来源于此,在此对作者表示感激。



你可能感兴趣的:(最简Trie的实现)