学习动态性能表 第十一篇-(1)-V$LATCH 2007.6.7

学习动态性能表 第十一篇-(1)-V$LATCH 2007.6.7
 

Oracle Rdbms应用了各种不同类型的锁定机制,latch即是其中的一种。Latch是用于保护SGA区中共享数据结构的一种串行化锁定机制。Latch的实现是与操作系统相关的,尤其和一个进程是否需要等待一个latch、需要等待多长时间有关。Latch是一种能够极快地被获取和释放的锁,它通常用于保护描述buffer cacheblock的数据结构。与每个latch相联系的还有一个清除过程,当持有latch的进程成为死进程时,该清除过程就会被调用。Latch还具有相关级别,用于防止死锁,一旦一个进程在某个级别上得到一个latch,它就不可能再获得等同或低于该级别的latch

 

  本视图保存自实例启动各类栓锁的统计信息。常用于当v$session_wait中发现栓锁竞争时鉴别SGA区中问题所在区域。

 

  v$latch表的每一行包括了对不同类型latch的统计,每一列反映了不同类型的latch请求的活动情况。不同类型的latch请求之间的区别在于,当latch不可立即获得时,请求进程是否继续进行。按此分类,latch请求的类型可分为两类:willing-to-waitimmediate

 

l         Willing-to-wait:是指如果所请求的latch不能立即得到,请求进程将等待一很短的时间后再次发出请求。进程一直重复此过程直到得到latch

l         Immediate:是指如果所请求的latch不能立即得到,请求进程就不再等待,而是继续执行下去。

 

V$LATCH中的常用列:

l         NAMElatch名称

l         IMMEDIATE_GETS:以Immediate模式latch请求数

l         IMMEDIATE_MISSES:请求失败数

l         GETS:以Willing to wait请求模式latch的请求数

l         MISSES:初次尝试请求不成功次数

l         SPIN_GETS:第一次尝试失败,但在以后的轮次中成功

l         SLEEP[x]:成功获取前sleeping次数

l         WAIT_TIME:花费在等待latch的时间

 

V$LATCH中的连接列

Column                              View                                          Joined Column(s)

---------------------                ------------------------------                   ------------------------

NAME/LATCH#                   V$LATCH_CHILDREN         NAME/LATCH#

NAME                                V$LATCHHOLDER                     NAME

NAME/LATCH#                  V$LATCHNAME                         NAME/LATCH#

NAME                                V$LATCH_MISSES                     PARENT_NAME

 

示例:
下列的示例中,创建一个表存储查询自v$latch的数据:

CREATE TABLE snap_latch as SELECT 0 snap_id, sysdate snap_date, a.* FROM V$LATCH a;

ALTER TABLE snap_latch add  (constraint snap_filestat primary key (snap_id, name));

 

最初,snap_id被置为0,稍后,snap_latch表的snap_id列被更新为1

INSERT INTO snap_latch SELECT 1, sysdate, a.* FROM V$LATCH a;

注意你通过sql语句插入记录时必须增加snap_id的值。

 

在你连续插入记录之后,使用下列的select语句列出统计。注意0不能成为被除数。

 

SELECT SUBSTR(a.name,1,20) NAME, (a.gets-b.gets)/1000 "Gets(K)",

       (a.gets-b.gets)/(86400*(a.snap_date-b.snap_date)) "Get/s",

       DECODE ((a.gets-b.gets), 0, 0, (100*(a.misses-b.misses)/(a.gets-b.gets))) MISS,

       DECODE ((a.misses-b.misses), 0, 0,

              (100*(a.spin_gets-b.spin_gets)/(a.misses-b.misses))) SPIN,

       (a.immediate_gets-b.immediate_gets)/1000 "Iget(K)",

       (a.immediate_gets-b.immediate_gets)/ (86400*(a.snap_date-b.snap_date)) "IGet/s",

       DECODE ((a.immediate_gets-b.immediate_gets), 0, 0,

       (100*(a.immediate_misses-b.immediate_misses)/ (a.immediate_gets-b.immediate_gets)))

 

IMISS

  FROM snap_latch a, snap_latch b

 WHERE a.name = b.name

   AND a.snap_id = b.snap_id + 1

   AND ( (a.misses-b.misses) > 0.001*(a.gets-b.gets)

       or (a.immediate_misses-b.immediate_misses) >

       0.001*(a.immediate_gets-b.immediate_gets))

ORDER BY 2 DESC;

 

下例列出latch统计项,miss列小于0.1%的记录已经被过滤。

NAME                Gets(K)   Get/s  MISS   SPIN IGets(K)  IGet/s IMISS

------------------ -------- ------- ----- ------ -------- ------- -----

cache buffers chai  255,272  69,938   0.4   99.9    3,902   1,069   0.0

library cache       229,405  62,851   9.1   96.9   51,653  14,151   3.7

shared pool          24,206   6,632  14.1   72.1        0       0   0.0

latch wait list       1,828     501   0.4   99.9    1,836     503   0.5

row cache objects     1,703     467   0.7   98.9    1,509     413   0.2

redo allocation         984     270   0.2   99.7        0       0   0.0

messages                116      32   0.2  100.0        0       0   0.0

cache buffers lru        91      25   0.3   99.0    7,214   1,976   0.3

modify parameter v        2       0   0.1  100.0        0       0   0.0

redo copy                 0       0  92.3   99.3    1,460     400   0.0

 

什么时候需要检查latch统计呢?看下列项:

 

l         misses/gets的比率是多少

l         获自spinningmisses的百分比是多少

l         latch请求了多少次

l         latch休眠了多少次

 

  Redo copy latch看起来有很高的的失误率,高达92.3%。不过,我们再仔细看的话,Redo copy latches是获自immediate模式。immediate模式的数值看起来还不错,并且immediate模式只有个别数大于willing to wait模式。所以Redo copy latch其实并不存在竞争。不过,看起来shared poollibrary cache latches可能存在竞争。考虑执行一条查询检查latchessleeps以确认是否确实存在问题。

 

    latch40余种,但作为DBA关心的主要应有以下几种:

l         Cache buffers chains latch:当用户进程搜索SGA寻找database cache buffers时需要使用此latch

l         Cache buffers LRU chain latch:当用户进程要搜索buffer cache中包括所有 dirty blocksLRU (least recently used) 链时使用该种latch

l         Redo log buffer latch:这种latch控制redo log buffer中每条redo entries的空间分配。

l         Row cache objects latch:当用户进程访问缓存的数据字典数值时,将使用Row cache objects latch

 

Latches调优

 

不要调整latches。如果你发现latch存在竞争,它可能是部分SGA资源使用反常的征兆。要修正问题所在,你更多的是去检查那部分SGA资源使用的竞争情况。仅仅从v$latch是无法定位问题所在的。

 

关于latches的更多信息可以浏览Oracle Database Concepts

 

 

 

第十一篇-(2)-V$LATCH_CHILDREN  2007.6.6

 

  数据库中有些类别的latches拥有多个。V$LATCH中提供了每个类别的总计信息。如果想看到单个latch,你可以通过查询本视图。

 

例如:

select name,count(*) ct from v$Latch_children group by name order by ct desc;

 

v$latch相比,除多child#列外,其余列与之同,不详述~~

你可能感兴趣的:(学习动态性能表 第十一篇-(1)-V$LATCH 2007.6.7)