1.Hash table
Not to be confused with Hash list or Hash tree.
什么是hash table ?
哈希表(Hash table,也叫散列表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。
哈希表hashtable(key,value) 的做法其实很简单,就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标,将value存储在以该数字为下标的数组空间里。
而当使用哈希表进行查询的时候,就是再次使用哈希函数将key转换为对应的数组下标,并定位到该空间获取value,如此一来,就可以充分利用到数组的定位性能进行数据定位
wiki上的定义:
a hash table (also hash map) is a data structure used to implement anassociative array, a structure that can map keys to values. A hash table uses a hash function to compute an index into an array of buckets or slots, from which the correct value can be found.
下面解释一下associative array(关联数组)
关联数组(英语:Associative Array),又称映射(Map)、字典(Dictionary)是一个抽象的数据结构,它包含着类似于(键,值)的有序对。一个关联数组中的有序对可以重复(如C++中的multimap)也可以不重复(如C++中的map)。
这种数据结构包含以下几种常见的操作:
- 向关联数组添加配对
- 从关联数组内删除配对
- 修改关联数组内的配对
- 根据已知的键寻找配对
字典问题是设计一种能够具备关联数组特性的数据结构。解决字典问题的常用方法,是利用散列表,但有些情况下,也可以直接使用有地址的数组,或二叉树,和其他结构。
许多程序设计语言内置基本的数据类型,提供对关联数组的支持。而Content-addressable memory则是硬件层面上实现对关联数组的支持。
由上可知hash table 就常用来解决字典问题(INSERT,SEARCH,DELETE)。
why use hash table ?
通过前面的章节想必大家对数组和链表有了了解,下面对他们三者进行比较。
数组的特点是:寻址容易,插入和删除困难;而链表的特点是:寻址困难,插入和删除容易。那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表。
下面是它的时间空间复杂度
Hash table |
Type |
Unordered associative array |
Invented |
1953 |
Time complexity in big O notation |
|
Average |
Worst case |
Space |
O(n)[1] |
O(n) |
Search |
O(1) |
O(n) |
Insert |
O(1) |
O(n) |
Delete |
O(1) |
O(n) |
2.Hash function
The idea of hashing is to distribute the entries (key/value pairs) across an array of buckets. Given a key, the algorithm computes an index that suggests where the entry can be found:
hash = hashfunc(key)
index = hash % array_size
我们知道理想情况下,hash function 是将每一个key分配到单独的
bucket下。但是理想情况很少发生(除非
bucket是确定的)。这种不同的key分配到同一个
bucket下叫做
hash collisions。
3.Collision Resolution:
3.1 Separate chaining
In the method known asseparate chaining, each bucket is independent, and has some sort of list of entries with the same index. The time for hash table operations is the time to find the bucket (which is constant) plus the time for the list operation. (The technique is also calledopen hashing orclosed addressing.)
In a good hash table, each bucket has zero or one entries, and sometimes two or three, but rarely more than that. Therefore, structures that are efficient in time and space for these cases are preferred. Structures that are efficient for a fairly large number of entries are not needed or desirable. If these cases happen often, the hashing is not working well, and this needs to be fixed.
3.1.1 Separate chaining with linked lists
Chained hash tables with linked lists are popular because they require only basic data structures with simple algorithms, and can use simple hash functions that are unsuitable for other methods.
The cost of a table operation is that of scanning the entries of the selected bucket for the desired key. If the distribution of keys is sufficiently uniform, the average cost of a lookup depends only on the average number of keys per bucket—that is, on theload factor.
Chained hash tables remain effective even when the number of table entries n is much higher than the number of slots. Their performance degrades more gracefully (linearly) with the load factor. For example, a chained hash table with 1000 slots and 10,000 stored keys (load factor 10) is five to ten times slower than a 10,000-slot table (load factor 1); but still 1000 times faster than a plain sequential list, and possibly even faster than a balanced search tree.
For separate-chaining, the worst-case scenario is when all entries are inserted into the same bucket, in which case the hash table is ineffective and the cost is that of searching the bucket data structure. If the latter is a linear list, the lookup procedure may have to scan all its entries, so the worst-case cost is proportional to the number n of entries in the table.
The bucket chains are often implemented as ordered lists, sorted by the key field; this choice approximately halves the average cost of unsuccessful lookups, compared to an unordered list[citation needed]. However, if some keys are much more likely to come up than others, an unordered list with move-to-front heuristic may be more effective. More sophisticated data structures, such as balanced search trees, are worth considering only if the load factor is large (about 10 or more), or if the hash distribution is likely to be very non-uniform, or if one must guarantee good performance even in a worst-case scenario. However, using a larger table and/or a better hash function may be even more effective in those cases.
Chained hash tables also inherit the disadvantages of linked lists. When storing small keys and values, the space overhead of the next pointer in each entry record can be significant. An additional disadvantage is that traversing a linked list has poor cache performance, making the processor cache ineffective.
3.1.2 Separate chaining with list head cells
Some chaining implementations store the first record of each chain in the slot array itself. The number of pointer traversals is decreased by one for most cases. The purpose is to increase cache efficiency of hash table access.
The disadvantage is that an empty bucket takes the same space as a bucket with one entry. To save memory space, such hash tables often have about as many slots as stored entries, meaning that many slots have two or more entries.
3.1.3 Separate chaining with other structures
Instead of a list, one can use any other data structure that supports the required operations. For example, by using a self-balancing tree, the theoretical worst-case time of common hash table operations (insertion, deletion, lookup) can be brought down to O(log n) rather than O(n). However, this approach is only worth the trouble and extra memory cost if long delays must be avoided at all costs (e.g. in a real-time application), or if one must guard against many entries hashed to the same slot (e.g. if one expects extremely non-uniform distributions, or in the case of web sites or other publicly accessible services, which are vulnerable to malicious key distributions in requests).
The variant called array hash table uses a dynamic array to store all the entries that hash to the same slot.Each newly inserted entry gets appended to the end of the dynamic array that is assigned to the slot. The dynamic array is resized in an exact-fit manner, meaning it is grown only by as many bytes as needed. Alternative techniques such as growing the array by block sizes or pages were found to improve insertion performance, but at a cost in space. This variation makes more efficient use of CPU caching and the translation lookaside buffer (TLB), because slot entries are stored in sequential memory positions. It also dispenses with the next pointers that are required by linked lists, which saves space. Despite frequent array resizing, space overheads incurred by operating system such as memory fragmentation, were found to be small.
An elaboration on this approach is the so-called dynamic perfect hashing, where a bucket that contains k entries is organized as a perfect hash table with k2 slots. While it uses more memory (n2 slots for n entries, in the worst case and n*k slots in the average case), this variant has guaranteed constant worst-case lookup time, and low amortized time for insertion.
3.2 open addressing
In another strategy, called open addressing, all entry records are stored in the bucket array itself. When a new entry has to be inserted, the buckets are examined, starting with the hashed-to slot and proceeding in some probe sequence, until an unoccupied slot is found. When searching for an entry, the buckets are scanned in the same sequence, until either the target record is found, or an unused array slot is found, which indicates that there is no such key in the table.The name "open addressing" refers to the fact that the location ("address") of the item is not determined by its hash value. (This method is also called closed hashing; it should not be confused with "open hashing" or "closed addressing" that usually mean separate chaining.)
Well-known probe sequences include:
- Linear probing, in which the interval between probes is fixed (usually 1)
- Quadratic probing, in which the interval between probes is increased by adding the successive outputs of a quadratic polynomial to the starting value given by the original hash computation
- Double hashing, in which the interval between probes is computed by another hash function
A drawback of all these open addressing schemes is that the number of stored entries cannot exceed the number of slots in the bucket array. In fact, even with good hash functions, their performance dramatically degrades when the load factor grows beyond 0.7 or so. Thus a more aggressive resize scheme is needed. Separate linking works correctly with any load factor, although performance is likely to be reasonable if it is kept below 2 or so. For many applications, these restrictions mandate the use of dynamic resizing, with its attendant costs.
Open addressing schemes also put more stringent requirements on the hash function: besides distributing the keys more uniformly over the buckets, the function must also minimize the clustering of hash values that are consecutive in the probe order. Using separate chaining, the only concern is that too many objects map to the same hash value; whether they are adjacent or nearby is completely irrelevant.
Open addressing only saves memory if the entries are small (less than four times the size of a pointer) and the load factor is not too small. If the load factor is close to zero (that is, there are far more buckets than stored entries), open addressing is wasteful even if each entry is just two words.
Open addressing avoids the time overhead of allocating each new entry record, and can be implemented even in the absence of a memory allocator. It also avoids the extra indirection required to access the first entry of each bucket (that is, usually the only one). It also has better locality of reference, particularly with linear probing. With small record sizes, these factors can yield better performance than chaining, particularly for lookups.
Hash tables with open addressing are also easier to serialize, because they do not use pointers.
On the other hand, normal open addressing is a poor choice for large elements, because these elements fill entire CPU cache lines (negating the cache advantage), and a large amount of space is wasted on large empty table slots. If the open addressing table only stores references to elements (external storage), it uses space comparable to chaining even for large records but loses its speed advantage.
Generally speaking, open addressing is better used for hash tables with small records that can be stored within the table (internal storage) and fit in a cache line. They are particularly suitable for elements of one word or less. If the table is expected to have a high load factor, the records are large, or the data is variable-sized, chained hash tables often perform as well or better.
Ultimately, used sensibly, any kind of hash table algorithm is usually fast enough; and the percentage of a calculation spent in hash table code is low. Memory usage is rarely considered excessive. Therefore, in most cases the differences between these algorithms are marginal, and other considerations typically come into play.
4.Features
The main advantage of hash tables over other table data structures is speed. This advantage is more apparent when the number of entries is large. Hash tables are particularly efficient when the maximum number of entries can be predicted in advance, so that the bucket array can be allocated once with the optimum size and never resized.
If the set of key-value pairs is fixed and known ahead of time (so insertions and deletions are not allowed), one may reduce the average lookup cost by a careful choice of the hash function, bucket table size, and internal data structures. In particular, one may be able to devise a hash function that is collision-free, or even perfect (see below). In this case the keys need not be stored in the table.
Although operations on a hash table take constant time on average, the cost of a good hash function can be significantly higher than the inner loop of the lookup algorithm for a sequential list or search tree. Thus hash tables are not effective when the number of entries is very small. (However, in some cases the high cost of computing the hash function can be mitigated by saving the hash value together with the key.)
For certain string processing applications, such as spell-checking, hash tables may be less efficient than tries, finite automata, or Judy arrays. Also, if each key is represented by a small enough number of bits, then, instead of a hash table, one may use the key directly as the index into an array of values. Note that there are no collisions in this case.
The entries stored in a hash table can be enumerated efficiently (at constant cost per entry), but only in some pseudo-random order. Therefore, there is no efficient way to locate an entry whose key is nearest to a given key. Listing all n entries in some specific order generally requires a separate sorting step, whose cost is proportional to log(n) per entry. In comparison, ordered search trees have lookup and insertion cost proportional to log(n), but allow finding the nearest key at about the same cost, and ordered enumeration of all entries at constant cost per entry.
If the keys are not stored (because the hash function is collision-free), there may be no easy way to enumerate the keys that are present in the table at any given moment.
Although the average cost per operation is constant and fairly small, the cost of a single operation may be quite high. In particular, if the hash table uses dynamic resizing, an insertion or deletion operation may occasionally take time proportional to the number of entries. This may be a serious drawback in real-time or interactive applications.
Hash tables in general exhibit poor locality of reference—that is, the data to be accessed is distributed seemingly at random in memory. Because hash tables cause access patterns that jump around, this can trigger microprocessor cache misses that cause long delays. Compact data structures such as arrays searched with linear search may be faster, if the table is relatively small and keys are compact. The optimal performance point varies from system to system.
Hash tables become quite inefficient when there are many collisions. While extremely uneven hash distributions are extremely unlikely to arise by chance, a malicious adversary with knowledge of the hash function may be able to supply information to a hash that creates worst-case behavior by causing excessive collisions, resulting in very poor performance, e.g. a denial of service attack. In critical applications, universal hashing can be used; a data structure with better worst-case guarantees may be preferable.
References:
http://blog.csdn.net/v_july_v/article/details/6256463
http://en.wikipedia.org/wiki/Hash_table#Perfect_hash_function