和这一篇《数字图像直方图》内容是一样的,只是使用Mat格式实现~
//绘制灰度直方图 int main( ) { Mat src,gray; src=imread("baboon.jpg"); cvtColor(src,gray,CV_RGB2GRAY); int bins = 256; int hist_size[] = {bins}; float range[] = { 0, 256 }; const float* ranges[] = { range}; MatND hist; int channels[] = {0}; calcHist( &gray, 1, channels, Mat(), // do not use mask hist, 1, hist_size, ranges, true, // the histogram is uniform false ); double max_val; minMaxLoc(hist, 0, &max_val, 0, 0); int scale = 2; int hist_height=256; Mat hist_img = Mat::zeros(hist_height,bins*scale, CV_8UC3); for(int i=0;i<bins;i++) { float bin_val = hist.at<float>(i); int intensity = cvRound(bin_val*hist_height/max_val); //要绘制的高度 rectangle(hist_img,Point(i*scale,hist_height-1), Point((i+1)*scale - 1, hist_height - intensity), CV_RGB(255,255,255)); } imshow( "Source", src ); imshow( "Gray Histogram", hist_img ); waitKey(10000000000); return 0; }
//绘制RGB三色分量直方图 int main( ) { Mat src; src=imread("baboon.jpg"); int bins = 256; int hist_size[] = {bins}; float range[] = { 0, 256 }; const float* ranges[] = { range}; MatND hist_r,hist_g,hist_b; int channels_r[] = {0}; calcHist( &src, 1, channels_r, Mat(), // do not use mask hist_r, 1, hist_size, ranges, true, // the histogram is uniform false ); int channels_g[] = {1}; calcHist( &src, 1, channels_g, Mat(), // do not use mask hist_g, 1, hist_size, ranges, true, // the histogram is uniform false ); int channels_b[] = {2}; calcHist( &src, 1, channels_b, Mat(), // do not use mask hist_b, 1, hist_size, ranges, true, // the histogram is uniform false ); double max_val_r,max_val_g,max_val_b; minMaxLoc(hist_r, 0, &max_val_r, 0, 0); minMaxLoc(hist_g, 0, &max_val_g, 0, 0); minMaxLoc(hist_b, 0, &max_val_b, 0, 0); int scale = 1; int hist_height=256; Mat hist_img = Mat::zeros(hist_height,bins*3, CV_8UC3); for(int i=0;i<bins;i++) { float bin_val_r = hist_r.at<float>(i); float bin_val_g = hist_g.at<float>(i); float bin_val_b = hist_b.at<float>(i); int intensity_r = cvRound(bin_val_r*hist_height/max_val_r); //要绘制的高度 int intensity_g = cvRound(bin_val_g*hist_height/max_val_g); //要绘制的高度 int intensity_b = cvRound(bin_val_b*hist_height/max_val_b); //要绘制的高度 rectangle(hist_img,Point(i*scale,hist_height-1), Point((i+1)*scale - 1, hist_height - intensity_r), CV_RGB(255,0,0)); rectangle(hist_img,Point((i+bins)*scale,hist_height-1), Point((i+bins+1)*scale - 1, hist_height - intensity_g), CV_RGB(0,255,0)); rectangle(hist_img,Point((i+bins*2)*scale,hist_height-1), Point((i+bins*2+1)*scale - 1, hist_height - intensity_b), CV_RGB(0,0,255)); } imshow( "Source", src ); imshow( "RGB Histogram", hist_img ); waitKey(10000000000); return 0; }
//绘制H-S二维直方图 int main( ) { Mat src,hsv; src=imread("baboon.jpg"); cvtColor(src, hsv, CV_BGR2HSV); // Quantize the hue to 30 levels // and the saturation to 32 levels int hbins = 256, sbins = 180; int histSize[] = {hbins, sbins}; // hue varies from 0 to 179, see cvtColor float hranges[] = { 0, 180 }; // saturation varies from 0 (black-gray-white) to // 255 (pure spectrum color) float sranges[] = { 0, 256 }; const float* ranges[] = { hranges, sranges }; MatND hist; // we compute the histogram from the 0-th and 1-st channels int channels[] = {0, 1}; calcHist( &hsv, 1, channels, Mat(), // do not use mask hist, 2, histSize, ranges, true, // the histogram is uniform false ); double maxVal=0; minMaxLoc(hist, 0, &maxVal, 0, 0); int scale = 2; Mat histImg = Mat::zeros(sbins*scale, hbins*scale, CV_8UC3); for( int h = 0; h < hbins; h++ ) for( int s = 0; s < sbins; s++ ) { float binVal = hist.at<float>(h, s); int intensity = cvRound(binVal*255/maxVal); rectangle( histImg, Point(h*scale, s*scale), Point( (h+1)*scale - 1, (s+1)*scale - 1), Scalar::all(intensity), CV_FILLED ); } namedWindow( "Source", 1 ); imshow( "Source", src ); namedWindow( "H-S Histogram", 1 ); imshow( "H-S Histogram", histImg ); waitKey(10000000000); return 0; }