OpenRisc-45-or1200的ID模块分析

引言

之前,我们分析了or1200流水线的整体结构,也分析了流水线中IF级,EX级,本小节我们来分析ID(insn decode)级的一些细节。


1,基础

or1200的pipeline的ID阶段包含一个模块,就是ctrl模块,其对应的文件是or1200_ctrl.v。ID,就是instruction decode,顾名思义,其主要任务就是对从IF阶段取得的指令进行解析,产生各种控制信号。

在分析本模块之前,我们有必要先了解几个相关的概念,这对后面的RTL的分析会有很大帮助。

1>forwording & bypassing

forwording(前递) 和 bypassing(旁路)技术,是现在流水线中非常常见的技术,其作用主要是消除由于数据相关造成的流水线阻塞。什么意思呢?假如某个流水线有5 stages,指令A和指令B在流水线中执行,A在B前面,指令B需要指令A的运算结果,指令A的运算结果在EX阶段就能算出。如果不用forwording & bypassing技术,指令B要等到指令A完成WB阶段的操作之后才能执行,也就是说指令B在指令A完成WB阶段之前必须阻塞。这显然会降低流水线的效率,怎么办呢?就是引进forwording & bypassing技术,将指令A在EX阶段算出结果之后直接送给指令B,而不需要等到WB阶段。

为了便于理解,我们在举一个通俗点的例子,假如现在是8月份,小张(在北京)有一本书被小王(在上海)借走了,小张出差了,到10月份才能回来,小王到9月份就能把书看完,但是如果要归还的话,只能等到10月份,现在呢,小李(也在上海)又想借这本书,怎么办?如果一定要小王把书从上海寄回北京,然后等到小张10月份出差回来,再把书寄回上海的小李。这样做显然是太愚蠢了,直接打个电话让小王看完之后给小李就可以了嘛。那个电话,就是forwording & bypassing。

关于forwording & bypassing,如有兴趣,请参考:http://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Register_forwarding


2>pipeline bubble

pipeline bubble(流水线气泡),如果一切顺利,所有指令没有任何相关,也没有什么branch/jump指令的话。流水线的所有阶段在任何时刻都会正常工作,不会闲置。

但“人生不如意十之八九”,没有一帆风顺的事情,加入出现branch/jump的话,分支地址又不是紧跟后面的指令的话,那么紧跟后面的指令的所有流水线处理就是无效的,为了避免这种情况的出现,一般在branch/jump指令后面增加一条甚至多条NOP指令,即所谓的延迟槽,这时,流水线在某个时刻,有的流水线阶段就是空闲的,也就是出现了流水线气泡。关于pipeline bubble,如有兴趣,请参考:http://en.wikipedia.org/wiki/Bubble_(computing)


3>其他

关于分支预测(branch prediction),动态调度(dynamic schedule),循环展开(loop unrolling)等等这些技术,我们之前都介绍过了,这里不再赘述,如有疑问,请参考之前的blog内容。


2,or1200的ID模块

1>整体分析

前面我们说过,or1200采用的是5 stages integer static pipeline。ID(指令解码)是其中的第二个阶段,对应的是ctrl模块,这个阶段的任务大体可分为两个方面:

第一个方面是根据其他模块的控制,产生更详细的控制信号,来完成其他模块交给的任务,比如except模块捕获到了一个异常,想让流水线刷新,那么except模块送给ctrl模块一个信号,然后由ctrl模块产生相应的控制信号,刷新整条流水线。

第二个方面就是将F阶段送来的指令,根据指令的定义,而完成对所有指令的解析,解析的结果就是产生不同的控制信号。比如,如果是一条运算指令,那么就把操作数a和操作数b都取出来,送到rf_a和rf_b里面(关于rf模块,我们前面提到过,如有疑问请参考:http://blog.csdn.net/rill_zhen/article/details/9769937),并根据运算类型,产生对应的操作信号(如果是alu运算,就产生alu_op信号,如果是mac运算,就产生mac_op信号)。

ID阶段的整体结构简图,如下所示:

OpenRisc-45-or1200的ID模块分析_第1张图片

2>模块分析

了解了ctrl模块的大体功能是远远不够的,我们还需要知道其工作细节,下面我们就分析一下ctrl的内部情况。

1》流水线刷新信号的产生

这个部分工作,一共有4个信号,分别是if_flushpipe:刷新IF阶段;id_flushpipe,刷新ID阶段;ex_flushpipe,刷新EX阶段;wb_flushpipe,刷新WB阶段。

这几个信号是怎么产生的呢?代码实现如下:


//
// Flush pipeline
//
assign if_flushpipe = except_flushpipe | pc_we | extend_flush;
assign id_flushpipe = except_flushpipe | pc_we | extend_flush;
assign ex_flushpipe = except_flushpipe | pc_we | extend_flush;
assign wb_flushpipe = except_flushpipe | pc_we | extend_flush;

2》id_insn,流水线正在解码的指令暂时保存

在ctrl模块内部,有一个寄存器来保存从IF阶段传来的指令(if_insn),这个寄存器就是id_insn.它又是如何使用的呢,如下所示:


//
// Instruction latch in id_insn
//
always @(posedge clk or `OR1200_RST_EVENT rst)
begin
	if (rst == `OR1200_RST_VALUE)
		id_insn <=  {`OR1200_OR32_NOP, 26'h041_0000};
	else if (id_flushpipe)
		id_insn <=  {`OR1200_OR32_NOP, 26'h041_0000};        // NOP -> id_insn[16] must be 1
	else if (!id_freeze) begin
		id_insn <=  if_insn;
	end
end




3》ex_insn,给外部的信号

表示当前正在处理的指令,这个信号最终会送到du模块,用来调试时,可以知道当前正在解码的指令是什么。

代码如下:


//
// Instruction latch in ex_insn
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		ex_insn <=  {`OR1200_OR32_NOP, 26'h041_0000};
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		ex_insn <=  {`OR1200_OR32_NOP, 26'h041_0000};	// NOP -> ex_insn[16] must be 1
	else if (!ex_freeze) begin
		ex_insn <=  id_insn;
	end
end


4》ex_branch_op,表示分支指令的操作

这个信号送给了genpc模块和外部的du模块,宽度为3-bit。

代码如下:


//
// Generation of ex_branch_op
//
always @(posedge clk or `OR1200_RST_EVENT rst)
	if (rst == `OR1200_RST_VALUE)
		ex_branch_op <=  `OR1200_BRANCHOP_NOP;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		ex_branch_op <=  `OR1200_BRANCHOP_NOP;		
	else if (!ex_freeze)
		ex_branch_op <=  id_branch_op;


5》id_branch_op,表示PC的偏移的低3-bit

这个信号送给了genpc模块。我们前面说过,在进行分支预测时需要PC的偏移值,这个信号就是。

代码如下:


//
// Decode of id_branch_op
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		id_branch_op <=  `OR1200_BRANCHOP_NOP;
	else if (id_flushpipe)
		id_branch_op <=  `OR1200_BRANCHOP_NOP;
	else if (!id_freeze) begin
		case (if_insn[31:26])		// synopsys parallel_case

		// l.j
		`OR1200_OR32_J:
			id_branch_op <=  `OR1200_BRANCHOP_J;
		  
		// j.jal
		`OR1200_OR32_JAL:
			id_branch_op <=  `OR1200_BRANCHOP_J;
		  
		// j.jalr
		`OR1200_OR32_JALR:
			id_branch_op <=  `OR1200_BRANCHOP_JR;
		  
		// l.jr
		`OR1200_OR32_JR:
			id_branch_op <=  `OR1200_BRANCHOP_JR;
		  
		// l.bnf
		`OR1200_OR32_BNF:
			id_branch_op <=  `OR1200_BRANCHOP_BNF;
		  
		// l.bf
		`OR1200_OR32_BF:
			id_branch_op <=  `OR1200_BRANCHOP_BF;
		  
		// l.rfe
		`OR1200_OR32_RFE:
			id_branch_op <=  `OR1200_BRANCHOP_RFE;
		  
		// Non branch instructions
		default:
			id_branch_op <=  `OR1200_BRANCHOP_NOP;

		endcase
	end
end


6》rf_addrw,表示要向rf模块写入的地址

代码如下:


//
// Register file write address
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		rf_addrw <=  5'd0;
	else if (!ex_freeze & id_freeze)
		rf_addrw <=  5'd00;
	else if (!ex_freeze)
		case (id_insn[31:26])	// synopsys parallel_case
			`OR1200_OR32_JAL, `OR1200_OR32_JALR:
				rf_addrw <=  5'd09;	// link register r9
			default:
				rf_addrw <=  id_insn[25:21];
		endcase
end


7》rf_addra,rf_addrb,rf_rda,rf_rdb,这个四个信号表示从rf模块读的地址

代码如下:


//
// Register file read addresses
//
assign rf_addra = if_insn[20:16];
assign rf_addrb = if_insn[15:11];
assign rf_rda = if_insn[31] || if_maci_op;
assign rf_rdb = if_insn[30];

8》alu_op,ALU操作码的解析

这个信号是从各个运算指令中解析出的ALU运算的操作码。

代码如下:


//
// Decode of alu_op
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		alu_op <=  `OR1200_ALUOP_NOP;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		alu_op <=  `OR1200_ALUOP_NOP;
	else if (!ex_freeze) begin
	  case (id_insn[31:26])		// synopsys parallel_case
	    
	    // l.movhi
	    `OR1200_OR32_MOVHI:
	      alu_op <=  `OR1200_ALUOP_MOVHI;
	    
	    // l.addi
	    `OR1200_OR32_ADDI:
	      alu_op <=  `OR1200_ALUOP_ADD;
	    
	    // l.addic
	    `OR1200_OR32_ADDIC:
	      alu_op <=  `OR1200_ALUOP_ADDC;
	    
	    // l.andi
	    `OR1200_OR32_ANDI:
	      alu_op <=  `OR1200_ALUOP_AND;
	    
	    // l.ori
	    `OR1200_OR32_ORI:
	      alu_op <=  `OR1200_ALUOP_OR;
	    
	    // l.xori
	    `OR1200_OR32_XORI:
	      alu_op <=  `OR1200_ALUOP_XOR;
	    
	    // l.muli
		`ifdef OR1200_MULT_IMPLEMENTED
	    `OR1200_OR32_MULI:
	      alu_op <=  `OR1200_ALUOP_MUL;
		`endif
	    
	    // Shift and rotate insns with immediate
	    `OR1200_OR32_SH_ROTI:
	      alu_op <=  `OR1200_ALUOP_SHROT;
	    
	    // SFXX insns with immediate
	    `OR1200_OR32_SFXXI:
	      alu_op <=  `OR1200_ALUOP_COMP;
	    
	    // ALU instructions except the one with immediate
	    `OR1200_OR32_ALU:
	      alu_op <=  {1'b0,id_insn[3:0]};
	    
	    // SFXX instructions
	    `OR1200_OR32_SFXX:
	      alu_op <=  `OR1200_ALUOP_COMP;
		`ifdef OR1200_IMPL_ALU_CUST5	    
	    // l.cust5
	    `OR1200_OR32_CUST5:
	      alu_op <=  `OR1200_ALUOP_CUST5;
		`endif	    
	    // Default
	    default: begin
	      alu_op <=  `OR1200_ALUOP_NOP;
	    end
	      
	  endcase
	  
	end
end


9》alu_op2,特殊情况下ALU操作码的输出

代码如下:


//
// Decode of second ALU operation field [9:6]
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		alu_op2 <=  0;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
	        alu_op2 <= 0;
   	else if (!ex_freeze) begin
		alu_op2 <=  id_insn[`OR1200_ALUOP2_POS];
	end
end


10》mac_op,id_mac_op,mac运算的操作码解析

在=解析过程中使用了ex_mac_op中间临时寄存器,代码如下:


//
// Decode of mac_op
//
`ifdef OR1200_MAC_IMPLEMENTED
always @(id_insn) begin
	case (id_insn[31:26])		// synopsys parallel_case

	// l.maci
	`OR1200_OR32_MACI:
		id_mac_op =  `OR1200_MACOP_MAC;

	// l.mac, l.msb
	`OR1200_OR32_MACMSB:
		id_mac_op =  id_insn[2:0];

	// Illegal and OR1200 unsupported instructions
	default:
		id_mac_op =  `OR1200_MACOP_NOP;

	endcase
end

always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		ex_mac_op <=  `OR1200_MACOP_NOP;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		ex_mac_op <=  `OR1200_MACOP_NOP;
	else if (!ex_freeze)
		ex_mac_op <=  id_mac_op;
end

assign mac_op = abort_mvspr ? `OR1200_MACOP_NOP : ex_mac_op;
`else
assign id_mac_op = `OR1200_MACOP_NOP;
assign mac_op = `OR1200_MACOP_NOP;
`endif


11》rfwb_op,rf(register file)的write back操作码的解析

代码如下:


//
// Decode of rfwb_op
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		rfwb_op <=  `OR1200_RFWBOP_NOP;
	else  if (!ex_freeze & id_freeze | ex_flushpipe)
		rfwb_op <=  `OR1200_RFWBOP_NOP;
	else  if (!ex_freeze) begin
		case (id_insn[31:26])		// synopsys parallel_case

		// j.jal
		`OR1200_OR32_JAL:
			rfwb_op <=  {`OR1200_RFWBOP_LR, 1'b1};
		  
		// j.jalr
		`OR1200_OR32_JALR:
			rfwb_op <=  {`OR1200_RFWBOP_LR, 1'b1};
		  
		// l.movhi
		`OR1200_OR32_MOVHI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// l.mfspr
		`OR1200_OR32_MFSPR:
			rfwb_op <=  {`OR1200_RFWBOP_SPRS, 1'b1};
		  
		// l.lwz
		`OR1200_OR32_LWZ:
			rfwb_op <=  {`OR1200_RFWBOP_LSU, 1'b1};
		  
		// l.lbz
		`OR1200_OR32_LBZ:
			rfwb_op <=  {`OR1200_RFWBOP_LSU, 1'b1};
		  
		// l.lbs
		`OR1200_OR32_LBS:
			rfwb_op <=  {`OR1200_RFWBOP_LSU, 1'b1};
		  
		// l.lhz
		`OR1200_OR32_LHZ:
			rfwb_op <=  {`OR1200_RFWBOP_LSU, 1'b1};
		  
		// l.lhs
		`OR1200_OR32_LHS:
			rfwb_op <=  {`OR1200_RFWBOP_LSU, 1'b1};
		  
		// l.addi
		`OR1200_OR32_ADDI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// l.addic
		`OR1200_OR32_ADDIC:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// l.andi
		`OR1200_OR32_ANDI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// l.ori
		`OR1200_OR32_ORI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// l.xori
		`OR1200_OR32_XORI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// l.muli
		`ifdef OR1200_MULT_IMPLEMENTED
		`OR1200_OR32_MULI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		`endif
		  
		// Shift and rotate insns with immediate
		`OR1200_OR32_SH_ROTI:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		  
		// ALU instructions except the one with immediate
		`OR1200_OR32_ALU:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};

		`ifdef OR1200_ALU_IMPL_CUST5
		// l.cust5 instructions
		`OR1200_OR32_CUST5:
			rfwb_op <=  {`OR1200_RFWBOP_ALU, 1'b1};
		`endif
		`ifdef OR1200_FPU_IMPLEMENTED
		  // FPU instructions, lf.XXX.s, except sfxx
		  `OR1200_OR32_FLOAT:
		    rfwb_op <=  {`OR1200_RFWBOP_FPU,!id_insn[3]};
		`endif
		// Instructions w/o register-file write-back
		default: 
			rfwb_op <=  `OR1200_RFWBOP_NOP;


		endcase
	end
end


12》fpu_op,float point process运算的操作码解析

代码如下,需要说明的是ORPSoC的FPU模块并没有实现。


//
// Decode of FPU ops
//
`ifdef OR1200_FPU_IMPLEMENTED
   assign fpu_op = {(id_insn[31:26] == `OR1200_OR32_FLOAT), 
		    id_insn[`OR1200_FPUOP_WIDTH-2:0]};
`else
   assign fpu_op = {`OR1200_FPUOP_WIDTH{1'b0}};
`endif


13》wb_insn

代码如下,需要注意的是这个信号不能被异常所修改。

wb_insn should not be changed by exceptions due to correct recording of display_arch_state in the or1200_monitor!  wb_insn changed by exception is not used elsewhere!


//
// Instruction latch in wb_insn
//

always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		wb_insn <=  {`OR1200_OR32_NOP, 26'h041_0000};
	else if (!wb_freeze) begin
		wb_insn <=  ex_insn;
	end
end


14》id_branch_addrtarget,分支指令跳转地址

代码如下:


//
// ID Sign extension of branch offset
//
assign id_branch_addrtarget = {{4{id_insn[25]}}, id_insn[25:0]} + id_pc[31:2];


15》ex_branch_addrtarget

是id_branch_addrtarget信号的备份,留给debug使用

代码如下:


// pipeline ID and EX branch target address 
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		ex_branch_addrtarget <=  0;
	else if (!ex_freeze) 
		ex_branch_addrtarget <=  id_branch_addrtarget;
end


16》sel_a,sel_b,选择要处理的操作码

这两个信号送给了operandmuxes模块,每个信号为2-bit.,表示操作数是来自于哪里,有4中可能:通用寄存器,wb会写数据,ex的执行结果(forword而来),立即数。

代码如下:


//
// Generation of sel_a
//
always @(rf_addrw or id_insn or rfwb_op or wbforw_valid or wb_rfaddrw)
	if ((id_insn[20:16] == rf_addrw) && rfwb_op[0])
		sel_a = `OR1200_SEL_EX_FORW;
	else if ((id_insn[20:16] == wb_rfaddrw) && wbforw_valid)
		sel_a = `OR1200_SEL_WB_FORW;
	else
		sel_a = `OR1200_SEL_RF;

//
// Generation of sel_b
//
always @(rf_addrw or sel_imm or id_insn or rfwb_op or wbforw_valid or 
	 wb_rfaddrw)
	if (sel_imm)
		sel_b = `OR1200_SEL_IMM;
	else if ((id_insn[15:11] == rf_addrw) && rfwb_op[0])
		sel_b = `OR1200_SEL_EX_FORW;
	else if ((id_insn[15:11] == wb_rfaddrw) && wbforw_valid)
		sel_b = `OR1200_SEL_WB_FORW;
	else
		sel_b = `OR1200_SEL_RF;


17》id_lsu_op,load/store指令的操作码解析


代码如下:


//
// Decode of id_lsu_op
//
always @(id_insn) begin
	case (id_insn[31:26])		// synopsys parallel_case

	// l.lwz
	`OR1200_OR32_LWZ:
		id_lsu_op =  `OR1200_LSUOP_LWZ;

	// l.lbz
	`OR1200_OR32_LBZ:
		id_lsu_op =  `OR1200_LSUOP_LBZ;

	// l.lbs
	`OR1200_OR32_LBS:
		id_lsu_op =  `OR1200_LSUOP_LBS;

	// l.lhz
	`OR1200_OR32_LHZ:
		id_lsu_op =  `OR1200_LSUOP_LHZ;

	// l.lhs
	`OR1200_OR32_LHS:
		id_lsu_op =  `OR1200_LSUOP_LHS;

	// l.sw
	`OR1200_OR32_SW:
		id_lsu_op =  `OR1200_LSUOP_SW;

	// l.sb
	`OR1200_OR32_SB:
		id_lsu_op =  `OR1200_LSUOP_SB;

	// l.sh
	`OR1200_OR32_SH:
		id_lsu_op =  `OR1200_LSUOP_SH;

	// Non load/store instructions
	default:
		id_lsu_op =  `OR1200_LSUOP_NOP;

	endcase
end


18》comp_op,比较指令的操作码解析,送给ALU单元

代码如下:


//
// Decode of comp_op
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE) begin
		comp_op <=  4'd0;
	end else if (!ex_freeze & id_freeze | ex_flushpipe)
		comp_op <=  4'd0;
	else if (!ex_freeze)
		comp_op <=  id_insn[24:21];
end


19》multicycle,根据指令类型,判断是否是多个cycle完成还是单个cycle完成。

这个信号送给freeze模块,代码如下:


//
// Decode of multicycle
//
always @(id_insn) begin
  case (id_insn[31:26])		// synopsys parallel_case
    // l.rfe
    `OR1200_OR32_RFE,
    // l.mfspr
    `OR1200_OR32_MFSPR:
      multicycle = `OR1200_TWO_CYCLES;	// to read from ITLB/DTLB (sync RAMs)
    // Single cycle instructions
    default: begin
      multicycle = `OR1200_ONE_CYCLE;
    end    
  endcase
end


20》wait_on,流水线等待的周期数

这个信号也是送给了freeze模块,代码如下:


//
// Encode wait_on signal
//    
always @(id_insn) begin
   case (id_insn[31:26])		// synopsys parallel_case
     `OR1200_OR32_ALU: 
       wait_on =  ( 1'b0
`ifdef OR1200_DIV_IMPLEMENTED
                     | (id_insn[4:0] == `OR1200_ALUOP_DIV)
		     | (id_insn[4:0] == `OR1200_ALUOP_DIVU)
`endif
`ifdef OR1200_MULT_IMPLEMENTED
		     | (id_insn[4:0] == `OR1200_ALUOP_MUL)
		     | (id_insn[4:0] == `OR1200_ALUOP_MULU)
`endif
		    ) ? `OR1200_WAIT_ON_MULTMAC : `OR1200_WAIT_ON_NOTHING;
`ifdef OR1200_MULT_IMPLEMENTED
`ifdef OR1200_MAC_IMPLEMENTED
     `OR1200_OR32_MACMSB,
     `OR1200_OR32_MACI,
`endif
     `OR1200_OR32_MULI:       
	 wait_on = `OR1200_WAIT_ON_MULTMAC;
`endif
`ifdef OR1200_MAC_IMPLEMENTED
     `OR1200_OR32_MACRC:
         wait_on = id_insn[16] ? `OR1200_WAIT_ON_MULTMAC : 
		                 `OR1200_WAIT_ON_NOTHING;
`endif		   
`ifdef OR1200_FPU_IMPLEMENTED
       `OR1200_OR32_FLOAT: begin
	 wait_on = id_insn[`OR1200_FPUOP_DOUBLE_BIT] ? 0 : `OR1200_WAIT_ON_FPU;
       end
`endif
`ifndef OR1200_DC_WRITEHROUGH
     // l.mtspr
     `OR1200_OR32_MTSPR: begin
	wait_on = `OR1200_WAIT_ON_MTSPR;
     end
`endif
     default: begin
	wait_on = `OR1200_WAIT_ON_NOTHING;
     end
   endcase // case (id_insn[31:26])
end


21》cust5_op,cust5_limm这两个信号是对cust5运算的操作码的解析

代码如下:


//
// cust5_op, cust5_limm (L immediate)
//
assign cust5_op = ex_insn[4:0];
assign cust5_limm = ex_insn[10:5];


22》id_simm,ex_simm

id_simm是运算指令中的立即数的解析,ex_simm是id_simm的备份,供调试使用。

代码如下:


//
// EX Sign/Zero extension of immediates
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		ex_simm <=  32'h0000_0000;
	else if (!ex_freeze) begin
		ex_simm <=  id_simm;
	end
end

//
// ID Sign/Zero extension of immediate
//
always @(id_insn) begin
	case (id_insn[31:26])     // synopsys parallel_case

	// l.addi
	`OR1200_OR32_ADDI:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};

	// l.addic
	`OR1200_OR32_ADDIC:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};

	// l.lxx (load instructions)
	`OR1200_OR32_LWZ, `OR1200_OR32_LBZ, `OR1200_OR32_LBS, 
	`OR1200_OR32_LHZ, `OR1200_OR32_LHS:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};

	// l.muli
	`ifdef OR1200_MULT_IMPLEMENTED
	`OR1200_OR32_MULI:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};
	`endif

	// l.maci
	`ifdef OR1200_MAC_IMPLEMENTED
	`OR1200_OR32_MACI:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};
	`endif

	// l.mtspr
	`OR1200_OR32_MTSPR:
		id_simm = {16'b0, id_insn[25:21], id_insn[10:0]};

	// l.sxx (store instructions)
	`OR1200_OR32_SW, `OR1200_OR32_SH, `OR1200_OR32_SB:
		id_simm = {{16{id_insn[25]}}, id_insn[25:21], id_insn[10:0]};

	// l.xori
	`OR1200_OR32_XORI:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};

	// l.sfxxi (SFXX with immediate)
	`OR1200_OR32_SFXXI:
		id_simm = {{16{id_insn[15]}}, id_insn[15:0]};

	// Instructions with no or zero extended immediate
	default:
		id_simm = {{16'b0}, id_insn[15:0]};

	endcase
end


23》sig_syscall,对系统调用指令的解析

我们都知道,现在一般的CPU指令集中会设计专门设计OS系统调用的指令,以加快系统调用的执行速度。

代码如下:


//
// Decode of l.sys
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		sig_syscall <=  1'b0;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		sig_syscall <=  1'b0;
	else if (!ex_freeze) begin
		sig_syscall <=  (id_insn[31:23] == {`OR1200_OR32_XSYNC, 3'b000});
	end
end


24》sig_trap,陷入指令的解析

与系统调用功能类似,用来处理软中断,比如著名的0x80中断。

代码如下:


//
// Decode of l.trap
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		sig_trap <=  1'b0;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		sig_trap <=  1'b0;
	else if (!ex_freeze) begin
		sig_trap <=  (id_insn[31:23] == {`OR1200_OR32_XSYNC, 3'b010})| du_hwbkpt;
	end
end


25》force_dslot_fetch,no_more_dslot,延迟槽控制信号

代码如下:


//
// Force fetch of delay slot instruction when jump/branch is preceeded by 
// load/store instructions
//
assign force_dslot_fetch = 1'b0;
assign no_more_dslot = (|ex_branch_op & !id_void & ex_branch_taken) | 
		       (ex_branch_op == `OR1200_BRANCHOP_RFE);



26》对NOP指令的解析

对于NOP指令,判断当前的指令是否为NOP,产生标示三个信号给其它的流水阶段。

代码如下,需要说明的是wb-void信号并未引出来。


assign id_void = (id_insn[31:26] == `OR1200_OR32_NOP) & id_insn[16];
assign ex_void = (ex_insn[31:26] == `OR1200_OR32_NOP) & ex_insn[16];
assign wb_void = (wb_insn[31:26] == `OR1200_OR32_NOP) & wb_insn[16];


27》ex_spr_write,ex_spr_read产生对sprs的读写信号

代码如下:


assign ex_spr_write = spr_write && !abort_mvspr;
assign ex_spr_read = spr_read && !abort_mvspr;


28》id_macrc_op,ex_macrc_op,ID阶段和EX阶段的mac运算的操作码解析

代码如下:


//
// l.macrc in ID stage
//
`ifdef OR1200_MAC_IMPLEMENTED
	assign id_macrc_op = (id_insn[31:26] == `OR1200_OR32_MACRC) & id_insn[16];
`else
	assign id_macrc_op = 1'b0;
`endif

//
// l.macrc in EX stage
//
`ifdef OR1200_MAC_IMPLEMENTED
	always @(posedge clk or `OR1200_RST_EVENT rst)
	begin
		if (rst == `OR1200_RST_VALUE)
			ex_macrc_op <=  1'b0;
		else if (!ex_freeze & id_freeze | ex_flushpipe)
			ex_macrc_op <=  1'b0;
		else if (!ex_freeze)
			ex_macrc_op <=  id_macrc_op;
	end
`else
	assign ex_macrc_op = 1'b0;
`endif



29》rfe,是异常返回指示信号

代码如下:


assign rfe = (id_branch_op == `OR1200_BRANCHOP_RFE) | 
	     (ex_branch_op == `OR1200_BRANCHOP_RFE);

这个信号送给了if模块,if模块的使用方法如下,如果是异常返回,并且之前保存过,则不用重新从cache里面取指了。


assign if_insn = no_more_dslot | rfe | if_bypass ? {`OR1200_OR32_NOP, 26'h041_0000} : saved ? insn_saved : icpu_ack_i ? icpu_dat_i : {`OR1200_OR32_NOP, 26'h061_0000};


30》except_illegal,非法指令异常信号

将当前指令和指令集中所有指令进行比较,如果不是,则拉高本信号。

代码如下:


//
// Decode of except_illegal
//
always @(posedge clk or `OR1200_RST_EVENT rst) begin
	if (rst == `OR1200_RST_VALUE)
		except_illegal <=  1'b0;
	else if (!ex_freeze & id_freeze | ex_flushpipe)
		except_illegal <=  1'b0;
	else if (!ex_freeze) begin
		case (id_insn[31:26])		// synopsys parallel_case

		`OR1200_OR32_J,
		`OR1200_OR32_JAL,
		`OR1200_OR32_JALR,
		`OR1200_OR32_JR,
		`OR1200_OR32_BNF,
		`OR1200_OR32_BF,
		`OR1200_OR32_RFE,
		`OR1200_OR32_MOVHI,
		`OR1200_OR32_MFSPR,
		`OR1200_OR32_XSYNC,
`ifdef OR1200_MAC_IMPLEMENTED
		`OR1200_OR32_MACI,
`endif
		`OR1200_OR32_LWZ,
		`OR1200_OR32_LBZ,
		`OR1200_OR32_LBS,
		`OR1200_OR32_LHZ,
		`OR1200_OR32_LHS,
		`OR1200_OR32_ADDI,
		`OR1200_OR32_ADDIC,
		`OR1200_OR32_ANDI,
		`OR1200_OR32_ORI,
		`OR1200_OR32_XORI,
`ifdef OR1200_MULT_IMPLEMENTED
		`OR1200_OR32_MULI,
`endif
		`OR1200_OR32_SH_ROTI,
		`OR1200_OR32_SFXXI,
		`OR1200_OR32_MTSPR,
`ifdef OR1200_MAC_IMPLEMENTED
		`OR1200_OR32_MACMSB,
`endif
		`OR1200_OR32_SW,
		`OR1200_OR32_SB,
		`OR1200_OR32_SH,
		`OR1200_OR32_SFXX,
`ifdef OR1200_IMPL_ALU_CUST5
		`OR1200_OR32_CUST5,
`endif
	`OR1200_OR32_NOP:
		except_illegal <=  1'b0;
`ifdef OR1200_FPU_IMPLEMENTED
	    `OR1200_OR32_FLOAT:
                // Check it's not a double precision instruction
                except_illegal <=  id_insn[`OR1200_FPUOP_DOUBLE_BIT];
`endif	      

	`OR1200_OR32_ALU:
		except_illegal <=  1'b0 

`ifdef OR1200_MULT_IMPLEMENTED
`ifdef OR1200_DIV_IMPLEMENTED
`else 
		| (id_insn[4:0] == `OR1200_ALUOP_DIV)
		| (id_insn[4:0] == `OR1200_ALUOP_DIVU)
`endif
`else
		| (id_insn[4:0] == `OR1200_ALUOP_DIV)
		| (id_insn[4:0] == `OR1200_ALUOP_DIVU)
		| (id_insn[4:0] == `OR1200_ALUOP_MUL)
`endif

`ifdef OR1200_IMPL_ADDC
`else
		| (id_insn[4:0] == `OR1200_ALUOP_ADDC)
`endif

`ifdef OR1200_IMPL_ALU_FFL1
`else
		| (id_insn[4:0] == `OR1200_ALUOP_FFL1)
`endif

`ifdef OR1200_IMPL_ALU_ROTATE
`else
		| ((id_insn[4:0] == `OR1200_ALUOP_SHROT) &
		   (id_insn[9:6] == `OR1200_SHROTOP_ROR))
`endif

`ifdef OR1200_IMPL_SUB
`else
		| (id_insn[4:0] == `OR1200_ALUOP_SUB)
`endif
`ifdef OR1200_IMPL_ALU_EXT
`else
		| (id_insn[4:0] == `OR1200_ALUOP_EXTHB)
		| (id_insn[4:0] == `OR1200_ALUOP_EXTW)
`endif
		;

		// Illegal and OR1200 unsupported instructions
	default:
		except_illegal <=  1'b1;

	endcase
	end // if (!ex_freeze)
end


31》dc_no_writethrough

解析load/store指令中读写data cache的寄存器地址是来自r1(stack register)还是r2(frame pointer register)。

代码如下:


// Decode destination register address for data cache to check if store ops
// are being done from the stack register (r1) or frame pointer register (r2)
`ifdef OR1200_DC_NOSTACKWRITETHROUGH   
	always @(posedge clk or `OR1200_RST_EVENT rst)
	begin
		if (rst == `OR1200_RST_VALUE)
			dc_no_writethrough <= 0;
		else if (!ex_freeze)
			dc_no_writethrough <= (id_insn[20:16] == 5'd1) | (id_insn[20:16] == 5'd2);
	end
`else
	assign dc_no_writethrough = 0;
`endif 


3,小结

本小节我们分析了or1200的ID级的具体实现,至此,or1200的五级流水,我们已经分析了IF,ID,EX三级,还有MA和WB两级,那是future work了。

ctrl模块虽然看起来代码比较多,但内部却没有FSM,所以各个子模块都是相互独立的,所以没有想象的那么复杂。

enjoy!




你可能感兴趣的:(OpenRisc-45-or1200的ID模块分析)