【工程数学】若干种解方程组算法

// ConsoleAppSorSolu.cpp : 定义控制台应用程序的入口点。
//

/*
*函数功能:SOR迭代法,雅可比,高斯-赛德尔
*函数原形:bool SorSolution(float &x1,float &x2,float &x3,float acc);
*参数:float &x1,float &x2,float &x3,float acc,前三个参数就是方程的要求解的未知数,最后一个数精度
*返回值:bool型变量,表征函数成功计算与否
*时间复杂度:O(1)
*备注:无
*日期:2014/12/2
*原创:是
*作者:EbowTang
*Email:[email protected]
*/

#include "stdafx.h"
#include <iostream>
#include <math.h>
using namespace std;
bool SorSolution(float &x1,float &x2,float &x3,float acc);
int main()
{
	float x1=0.0,x2=1.0,x3=2.0;
	char ans='n';
	cout<<"该方程为:"<<endl;
	cout<<"9*x1-8.6*x2-1.32*x3=7.2"<<endl;
	cout<<"-1.9*x1+10*x2-1.63*x3=8.4"<<endl;
	cout<<"-x1-x2+15*x3=13.698"<<endl;
	do 
	{
	cout<<"/*******************SOR迭代法,华丽的分割线(此时w=2)*******************/"<<endl;
	cout<<"请输入解的精确度:"<<endl;
	float accuracy;
	cin>>accuracy;
	if (SorSolution(x1,x2,x3,accuracy))
	{
		cout<<"方程组的解为:"<<endl;
		cout<<"x1 = "<<x1<<",   x2 = "<<x2<<",   x3 = "<<x3<<endl;
	} 
	else
	{
		cout<<"该方程是发散的,无解!"<<endl;
	}
	
	cout<<"是否继续?(y/n)";
	cin>>ans;
	} while (ans=='y');
	return 0;
}
/***********求解线性方程组的解******************/
bool SorSolution(float &x1,float &x2,float &x3,float acc)
{
	float newX1=x1,newX2=x2,newX3=x3;         //新值初始化
	float oldX1=1.0,oldX2=2.0,oldX3=3.0;           //旧值初始化
	int count = 0;
	double w=2;//w>1(w>0)时为超松弛迭代法,否则为低松弛
	/*判断x1,x2,x3,如果都达到精度要求acc,则停止循环*/
	while (fabs(newX1-oldX1)>acc && fabs(newX2-oldX2)>acc&& fabs(newX3-oldX3)>acc)    
	{
		oldX1 = newX1;              			//将新值赋值给老值
		oldX2 = newX2;
		oldX3 = newX3;
		newX1 = (1-w)*newX1+w*((8.6/9)*oldX2+(1.32/9)*oldX3+(7.2/9));         
		newX2 = (1-w)*newX2+w*(0.19*oldX1+0.163*oldX3+0.84);
		newX3 = (1-w)*newX3+w*((1.0/15)*oldX1+(1.0/15)*oldX2+13.698/15);
		/***************************雅可比迭代形式*******************************
		newX1 = (8.6/9)*oldX2+(1.32/9)*oldX3+(7.2/9);        
		newX2 = 0.19*oldX1+0.163*oldX3+0.84;
		newX3 = (1.0/15)*oldX1+(1.0/15)*oldX2+13.698/15;
		************************************************************************/
		/***************************高斯赛德尔迭代形式****************************
		newX1 = (8.6/9)*oldX2+(1.32/9)*oldX3+(7.2/9);          
		newX2 = 0.19*newX1+0.163*oldX3+0.84;
		newX3 = (1.0/15)*newX1+(1.0/15)*newX2+13.698/15;
		************************************************************************/
		count++;
		if (count>1000)
			return false;
	}
		x1 = newX1;                 //达到精度要求则赋值并返回真
		x2 = newX2;
		x3 = newX3;
		cout<<"共迭代了:"<<count<<"次"<<endl;
		return true;
}

 
 

【工程数学】若干种解方程组算法_第1张图片

【工程数学】若干种解方程组算法_第2张图片

【工程数学】若干种解方程组算法_第3张图片【工程数学】若干种解方程组算法_第4张图片

你可能感兴趣的:(C++,sor,高斯赛德尔,雅可比算法)