1001. 害死人不偿命的(3n+1)猜想 (15)

1001. 害死人不偿命的(3n+1)猜想 (15)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

题目链接:http://www.patest.cn/contests/pat-b-practise/1001

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:
3
输出样例:
5




#include <stdio.h>
int main() {
	int n;
	scanf("%d", &n);
	int count = 0;				// 记录循环次数 
	while (n != 1) {
		if (n % 2 == 0)			// n为偶数时n减半 
			 n /= 2;
		else					// n为奇数时3n+1减半 
			n = (3 * n + 1) / 2;
		++count;
	}
	printf("%d", count);
	
	return 0;
}


你可能感兴趣的:(C语言,乙级,浙大PAT)