cvWaitKey()的实现
int cvWaitKey( int delay )
{
int time0 = GetTickCount();
for(;;)
{
CvWindow* window;
MSG message;
int is_processed = 0;
if( (delay > 0 && abs((int)(GetTickCount() - time0)) >= delay) ||
hg_windows == 0 )
return -1;
if( delay <= 0 )
GetMessage(&message, 0, 0, 0);
else if( PeekMessage(&message, 0, 0, 0, PM_REMOVE) == FALSE )
{
Sleep(1);
continue;
}
for( window = hg_windows; window != 0 && is_processed == 0; window =
window->next )
{
if( window->hwnd == message.hwnd || window->frame == message.hwnd )
{
is_processed = 1;
switch(message.message)
{
case WM_DESTROY:
case WM_CHAR:
DispatchMessage(&message);
return (int)message.wParam;
case WM_KEYDOWN:
TranslateMessage(&message);
default:
DispatchMessage(&message);
is_processed = 1;
break;
}
}
}
if( !is_processed )
{
TranslateMessage(&message);
DispatchMessage(&message);
}
}
}
/**********************************************************/
cvReleaseMat的实现
void cvReleaseMat( CvMat** array )
{
CV_FUNCNAME( "cvReleaseMat" );
__BEGIN__;
if( !array )
CV_ERROR_FROM_CODE( CV_HeaderIsNull );
if( *array )
{
CvMat* arr = *array;
if( !CV_IS_MAT_HDR(arr) && !CV_IS_MATND_HDR(arr) )
CV_ERROR_FROM_CODE( CV_StsBadFlag );
*array = 0;
cvDecRefData( arr );
cvFree( &arr );
}
__END__;
}
/**********************************************************/
cvFree的实现
#define cvFree(ptr) (cvFree_(*(ptr)), *(ptr)=0)
void cvFree_( void* ptr )
{
CV_FUNCNAME( "cvFree_" );
__BEGIN__;
if( ptr )
{
CVStatus status = p_cvFree( ptr, p_cvAllocUserData );
if( status < 0 )
CV_ERROR( status, "Deallocation error" );
}
__END__;
}
*ptr==NULL;
/**********************************************************/
cvReleaseMemStorage的实现
void
cvReleaseMemStorage( CvMemStorage** storage )
{
CvMemStorage *st;
CV_FUNCNAME( "cvReleaseMemStorage" );
__BEGIN__;
if( !storage )
CV_ERROR( CV_StsNullPtr, "" );
st = *storage;
*storage = 0;
if( st )
{
CV_CALL( icvDestroyMemStorage( st ));
cvFree( &st );
}
__END__;
}
typedef struct CvMemStorage
{
int signature;
CvMemBlock* bottom;/* first allocated block */
CvMemBlock* top; /* current memory block - top of the stack */
struct CvMemStorage* parent; /* borrows new blocks from */
int block_size; /* block size */
int free_space; /* free space in the current block */
}
CvMemStorage;
typedef struct CvMemBlock
{
struct CvMemBlock* prev;
struct CvMemBlock* next;
}
CvMemBlock;
/**********************************************************/
cvSeqPush的实现
char* cvSeqPush( CvSeq *seq, void *element )
{
char *ptr = 0;
size_t elem_size;
CV_FUNCNAME( "cvSeqPush" );// means static char cvFuncName[] = Name
__BEGIN__;
if( !seq )
CV_ERROR( CV_StsNullPtr, "" );
elem_size = seq->elem_size;
ptr = seq->ptr;
if( ptr >= seq->block_max )
{
CV_CALL( icvGrowSeq( seq, 0 ));
ptr = seq->ptr;
assert( ptr + elem_size <= seq->block_max /*&& ptr == seq->block_min */
);
}
if( element )
CV_MEMCPY_AUTO( ptr, element, elem_size );
seq->first->prev->count++;
seq->total++;
seq->ptr = ptr + elem_size;
__END__;
return ptr;
}
#define CV_FUNCNAME( Name ) \
static char cvFuncName[] = Name
#define CV_MEMCPY_AUTO( dst, src, len )
\
{
\
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len);
\
char* _icv_memcpy_dst_ = (char*)(dst);
\
const char* _icv_memcpy_src_ = (const char*)(src);
\
if( (_icv_memcpy_len_ & (sizeof(int)-1)) == 0 )
\
{
\
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 &&
\
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 );
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_;
\
_icv_memcpy_i_+=sizeof(int) )
\
{
\
*(int*)(_icv_memcpy_dst_+_icv_memcpy_i_) =
\
*(const int*)(_icv_memcpy_src_+_icv_memcpy_i_);
\
}
\
}
\
else
\
{
\
for(_icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_;
_icv_memcpy_i_++)\
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_
[_icv_memcpy_i_]; \
}
\
}
/**********************************************************/
cvGetSeqElem的底层实现
char*
cvGetSeqElem( const CvSeq *seq, int index )
{
CvSeqBlock *block;
int count, total = seq->total;
if( (unsigned)index >= (unsigned)total )
{
index += index < 0 ? total : 0;
index -= index >= total ? total : 0;
if( (unsigned)index >= (unsigned)total )
return 0;
}
block = seq->first;
if( index + index <= total )
{
while( index >= (count = block->count) )
{
block = block->next;
index -= count;
}
}
else
{
do
{
block = block->prev;
total -= block->count;
}
while( index < total );
index -= total;
}
return block->data + index * seq->elem_size;
}
typedef struct CvSeqBlock
{
struct CvSeqBlock* prev; /* previous sequence block */
struct CvSeqBlock* next; /* next sequence block */
int start_index; /* index of the first element in the block +
sequence->first->start_index */
int count; /* number of elements in the block */
char* data; /* pointer to the first element of the block */
}
CvSeqBlock;
/**********************************************************/
cvAlloc的实现代码
void* cvAlloc( size_t size )
{
void* ptr = 0;
CV_FUNCNAME( "cvAlloc" );
__BEGIN__;
if( (size_t)size > CV_MAX_ALLOC_SIZE )
CV_ERROR( CV_StsOutOfRange,
"Negative or too large argument of cvAlloc function" );
ptr = p_cvAlloc( size, p_cvAllocUserData );
if( !ptr )
CV_ERROR( CV_StsNoMem, "Out of memory" );
__END__;
return ptr;
}
#define CV_MAX_ALLOC_SIZE (((size_t)1 << (sizeof(size_t)*8-2)))
/**********************************************************/
cvCreateMat的实现
/**********************************************************/
cvIntegral的实现
/* D:\Program Files\OpenCV\cv\src\cvsumpixels.cpp */
void
cvIntegral( const CvArr* image, CvArr* sumImage,
CvArr* sumSqImage, CvArr* tiltedSumImage )
{
static CvFuncTable tab_c1, tab_cn;
static int inittab = 0;
CV_FUNCNAME( "cvIntegralImage" );
__BEGIN__;
CvMat src_stub, *src = (CvMat*)image;
CvMat sum_stub, *sum = (CvMat*)sumImage;
CvMat sqsum_stub, *sqsum = (CvMat*)sumSqImage;
CvMat tilted_stub, *tilted = (CvMat*)tiltedSumImage;
int coi0 = 0, coi1 = 0, coi2 = 0, coi3 = 0;
int depth, cn;
int src_step, sum_step, sqsum_step, tilted_step;
CvIntegralImageFuncC1 func_c1 = 0;
CvIntegralImageFuncCn func_cn = 0;
CvSize size;
if( !inittab )
{
icvInitIntegralImageTable( &tab_c1, &tab_cn );
inittab = 1;
}
CV_CALL( src = cvGetMat( src, &src_stub, &coi0 ));
CV_CALL( sum = cvGetMat( sum, &sum_stub, &coi1 ));
if( sum->width != src->width + 1 ||
sum->height != src->height + 1 )
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( CV_MAT_DEPTH( sum->type ) != CV_64F &&
(CV_MAT_DEPTH( src->type ) != CV_8U ||
CV_MAT_DEPTH( sum->type ) != CV_32S ) ||
!CV_ARE_CNS_EQ( src, sum ))
CV_ERROR( CV_StsUnsupportedFormat,
"Sum array must have 64f type (or 32s type in case of 8u source array)
"
"and the same number of channels as the source array" );
if( sqsum )
{
CV_CALL( sqsum = cvGetMat( sqsum, &sqsum_stub, &coi2 ));
if( !CV_ARE_SIZES_EQ( sum, sqsum ) )
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( CV_MAT_DEPTH( sqsum->type ) != CV_64F || !CV_ARE_CNS_EQ( src, sqsum
))
CV_ERROR( CV_StsUnsupportedFormat,
"Squares sum array must be 64f "
"and the same number of channels as the source array" );
}
if( tilted )
{
if( !sqsum )
CV_ERROR( CV_StsNullPtr,
"Squared sum array must be passed if tilted sum array is passed" );
CV_CALL( tilted = cvGetMat( tilted, &tilted_stub, &coi3 ));
if( !CV_ARE_SIZES_EQ( sum, tilted ) )
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( !CV_ARE_TYPES_EQ( sum, tilted ) )
CV_ERROR( CV_StsUnmatchedFormats,
"Sum and tilted sum must have the same types" );
if( CV_MAT_CN(tilted->type) != 1 )
CV_ERROR( CV_StsNotImplemented,
"Tilted sum can not be computed for multi-channel arrays"
);
}
if( coi0 || coi1 || coi2 || coi3 )
CV_ERROR( CV_BadCOI, "COI is not supported by the function" );
depth = CV_MAT_DEPTH(src->type);
cn = CV_MAT_CN(src->type);
if( CV_MAT_DEPTH( sum->type ) == CV_32S )
{
func_c1 = (CvIntegralImageFuncC1)icvIntegralImage_8u32s_C1R;
func_cn = (CvIntegralImageFuncCn)icvIntegralImage_8u32s_CnR;
}
else
{
func_c1 = (CvIntegralImageFuncC1)tab_c1.fn_2d[depth];
func_cn = (CvIntegralImageFuncCn)tab_cn.fn_2d[depth];
if( !func_c1 && !func_cn )
CV_ERROR( CV_StsUnsupportedFormat, "This source image format is
unsupported" );
}
size = cvGetMatSize(src);
src_step = src->step ? src->step : CV_STUB_STEP;
sum_step = sum->step ? sum->step : CV_STUB_STEP;
sqsum_step = !sqsum ? 0 : sqsum->step ? sqsum->step : CV_STUB_STEP;
tilted_step = !tilted ? 0 : tilted->step ? tilted->step : CV_STUB_STEP;
if( cn == 1 )
{
if( depth == CV_8U && !tilted && CV_MAT_DEPTH(sum->type) == CV_32S )
{
if( !sqsum && icvIntegral_8u32s_C1R_p &&
icvIntegral_8u32s_C1R_p( src->data.ptr, src_step,
sum->data.i, sum_step, size, 0 ) >= 0 )
EXIT;
if( sqsum && icvSqrIntegral_8u32s64f_C1R_p &&
icvSqrIntegral_8u32s64f_C1R_p( src->data.ptr, src_step, sum-
>data.i,
sum_step, sqsum->data.db, sqsum_step, size, 0, 0 )
>= 0 )
EXIT;
}
IPPI_CALL( func_c1( src->data.ptr, src_step, sum->data.ptr, sum_step,
sqsum ? sqsum->data.ptr : 0, sqsum_step,
tilted ? tilted->data.ptr : 0, tilted_step, size ));
}
else
{
IPPI_CALL( func_cn( src->data.ptr, src_step, sum->data.ptr, sum_step,
sqsum ? sqsum->data.ptr : 0, sqsum_step, size, cn ));
}
__END__;
}
typedef struct CvFuncTable
{
void* fn_2d[CV_DEPTH_MAX];
}
CvFuncTable;
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
/**********************************************************/
cvCanny 算法实现
void cvCanny( const void* srcarr, void* dstarr,
double low_thresh, double high_thresh, int aperture_size )
{
static const int sec_tab[] = { 1, 3, 0, 0, 2, 2, 2, 2 };
CvMat *dx = 0, *dy = 0;
void *buffer = 0;
uchar **stack_top, **stack_bottom = 0;
CV_FUNCNAME( "cvCanny" );
__BEGIN__;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvSize size;
int flags = aperture_size;
int low, high;
int* mag_buf[3];
uchar* map;
int mapstep, maxsize;
int i, j;
CvMat mag_row;
CV_CALL( src = cvGetMat( src, &srcstub ));
CV_CALL( dst = cvGetMat( dst, &dststub ));
if( CV_MAT_TYPE( src->type ) != CV_8UC1 ||
CV_MAT_TYPE( dst->type ) != CV_8UC1 )
CV_ERROR( CV_StsUnsupportedFormat, "" );
if( !CV_ARE_SIZES_EQ( src, dst ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( low_thresh > high_thresh )
{
double t;
CV_SWAP( low_thresh, high_thresh, t );
}
aperture_size &= INT_MAX;
if( (aperture_size & 1) == 0 || aperture_size < 3 || aperture_size > 7 )
CV_ERROR( CV_StsBadFlag, "" );
size = cvGetMatSize( src );
dx = cvCreateMat( size.height, size.width, CV_16SC1 );
dy = cvCreateMat( size.height, size.width, CV_16SC1 );
cvSobel( src, dx, 1, 0, aperture_size );
cvSobel( src, dy, 0, 1, aperture_size );
if( icvCannyGetSize_p && icvCanny_16s8u_C1R_p && !(flags &
CV_CANNY_L2_GRADIENT) )
{
int buf_size= 0;
IPPI_CALL( icvCannyGetSize_p( size, &buf_size ));
CV_CALL( buffer = cvAlloc( buf_size ));
IPPI_CALL( icvCanny_16s8u_C1R_p( (short*)dx->data.ptr, dx->step,
(short*)dy->data.ptr, dy->step,
dst->data.ptr, dst->step,
size, (float)low_thresh,
(float)high_thresh, buffer ));
EXIT;
}
if( flags & CV_CANNY_L2_GRADIENT )
{
Cv32suf ul, uh;
ul.f = (float)low_thresh;
uh.f = (float)high_thresh;
low = ul.i;
high = uh.i;
}
else
{
low = cvFloor( low_thresh );
high = cvFloor( high_thresh );
}
CV_CALL( buffer = cvAlloc( (size.width+2)*(size.height+2) +
(size.width+2)*3*sizeof(int)) );
mag_buf[0] = (int*)buffer;
mag_buf[1] = mag_buf[0] + size.width + 2;
mag_buf[2] = mag_buf[1] + size.width + 2;
map = (uchar*)(mag_buf[2] + size.width + 2);
mapstep = size.width + 2;
maxsize = MAX( 1 << 10, size.width*size.height/10 );
CV_CALL( stack_top = stack_bottom = (uchar**)cvAlloc( maxsize*sizeof
(stack_top[0]) ));
memset( mag_buf[0], 0, (size.width+2)*sizeof(int) );
memset( map, 1, mapstep );
memset( map + mapstep*(size.height + 1), 1, mapstep );
/* sector numbers
(Top-Left Origin)
1 2 3
* * *
* * *
0*******0
* * *
* * *
3 2 1
*/
#define CANNY_PUSH(d) *(d) = (uchar)2, *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
mag_row = cvMat( 1, size.width, CV_32F );
// calculate magnitude and angle of gradient, perform non-maxima
supression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for( i = 0; i <= size.height; i++ )
{
int* _mag = mag_buf[(i > 0) + 1] + 1;
float* _magf = (float*)_mag;
const short* _dx = (short*)(dx->data.ptr + dx->step*i);
const short* _dy = (short*)(dy->data.ptr + dy->step*i);
uchar* _map;
int x, y;
int magstep1, magstep2;
int prev_flag = 0;
if( i < size.height )
{
_mag[-1] = _mag[size.width] = 0;
if( !(flags & CV_CANNY_L2_GRADIENT) )
for( j = 0; j < size.width; j++ )
_mag[j] = abs(_dx[j]) + abs(_dy[j]);
else if( icvFilterSobelVert_8u16s_C1R_p != 0 ) // check for IPP
{
// use vectorized sqrt
mag_row.data.fl = _magf;
for( j = 0; j < size.width; j++ )
{
x = _dx[j]; y = _dy[j];
_magf[j] = (float)((double)x*x + (double)y*y);
}
cvPow( &mag_row, &mag_row, 0.5 );
}
else
{
for( j = 0; j < size.width; j++ )
{
x = _dx[j]; y = _dy[j];
_magf[j] = (float)sqrt((double)x*x + (double)y*y);
}
}
}
else
memset( _mag-1, 0, (size.width + 2)*sizeof(int) );
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if( i == 0 )
continue;
_map = map + mapstep*i + 1;
_map[-1] = _map[size.width] = 1;
_mag = mag_buf[1] + 1; // take the central row
_dx = (short*)(dx->data.ptr + dx->step*(i-1));
_dy = (short*)(dy->data.ptr + dy->step*(i-1));
magstep1 = (int)(mag_buf[2] - mag_buf[1]);
magstep2 = (int)(mag_buf[0] - mag_buf[1]);
if( (stack_top - stack_bottom) + size.width > maxsize )
{
uchar** new_stack_bottom;
maxsize = MAX( maxsize * 3/2, maxsize + size.width );
CV_CALL( new_stack_bottom = (uchar**)cvAlloc( maxsize * sizeof
(stack_top[0])) );
memcpy( new_stack_bottom, stack_bottom, (stack_top - stack_bottom)
*sizeof(stack_top[0]) );
stack_top = new_stack_bottom + (stack_top - stack_bottom);
cvFree( &stack_bottom );
stack_bottom = new_stack_bottom;
}
for( j = 0; j < size.width; j++ )
{
#define CANNY_SHIFT 15
#define TG22 (int)(0.4142135623730950488016887242097*
(1<<CANNY_SHIFT) + 0.5)
x = _dx[j];
y = _dy[j];
int s = x ^ y;
int m = _mag[j];
x = abs(x);
y = abs(y);
if( m > low )
{
int tg22x = x * TG22;
int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
y <<= CANNY_SHIFT;
if( y < tg22x )
{
if( m > _mag[j-1] && m >= _mag[j+1] )
{
if( m > high && !prev_flag && _map[j-mapstep] != 2 )
{
CANNY_PUSH( _map + j );
prev_flag = 1;
}
else
_map[j] = (uchar)0;
continue;
}
}
else if( y > tg67x )
{
if( m > _mag[j+magstep2] && m >= _mag[j+magstep1] )
{
if( m > high && !prev_flag && _map[j-mapstep] != 2 )
{
CANNY_PUSH( _map + j );
prev_flag = 1;
}
else
_map[j] = (uchar)0;
continue;
}
}
else
{
s = s < 0 ? -1 : 1;
if( m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s] )
{
if( m > high && !prev_flag && _map[j-mapstep] != 2 )
{
CANNY_PUSH( _map + j );
prev_flag = 1;
}
else
_map[j] = (uchar)0;
continue;
}
}
}
prev_flag = 0;
_map[j] = (uchar)1;
}
// scroll the ring buffer
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
while( stack_top > stack_bottom )
{
uchar* m;
if( (stack_top - stack_bottom) + 8 > maxsize )
{
uchar** new_stack_bottom;
maxsize = MAX( maxsize * 3/2, maxsize + 8 );
CV_CALL( new_stack_bottom = (uchar**)cvAlloc( maxsize * sizeof
(stack_top[0])) );
memcpy( new_stack_bottom, stack_bottom, (stack_top - stack_bottom)
*sizeof(stack_top[0]) );
stack_top = new_stack_bottom + (stack_top - stack_bottom);
cvFree( &stack_bottom );
stack_bottom = new_stack_bottom;
}
CANNY_POP(m);
if( !m[-1] )
CANNY_PUSH( m - 1 );
if( !m[1] )
CANNY_PUSH( m + 1 );
if( !m[-mapstep-1] )
CANNY_PUSH( m - mapstep - 1 );
if( !m[-mapstep] )
CANNY_PUSH( m - mapstep );
if( !m[-mapstep+1] )
CANNY_PUSH( m - mapstep + 1 );
if( !m[mapstep-1] )
CANNY_PUSH( m + mapstep - 1 );
if( !m[mapstep] )
CANNY_PUSH( m + mapstep );
if( !m[mapstep+1] )
CANNY_PUSH( m + mapstep + 1 );
}
// the final pass, form the final image
for( i = 0; i < size.height; i++ )
{
const uchar* _map = map + mapstep*(i+1) + 1;
uchar* _dst = dst->data.ptr + dst->step*i;
for( j = 0; j < size.width; j++ )
_dst[j] = (uchar)-(_map[j] >> 1);
}
__END__;
cvReleaseMat( &dx );
cvReleaseMat( &dy );
cvFree( &buffer );
cvFree( &stack_bottom );
}