- AI学习指南RAG篇(24)-RAGFlow的社区与开源贡献
俞兆鹏
AI学习指南人工智能
一、引言RAGFlow是一款基于深度文档理解的开源RAG(Retrieval-AugmentedGeneration,检索增强生成)引擎,旨在解决现有RAG技术在数据处理和生成答案方面的挑战。RAGFlow通过结合大型语言模型(LLMs)的强大生成能力和高效的信息检索系统,为用户提供了一种全新的交互体验。本文将鼓励读者参与到RAGFlow的开源社区中,共同推动技术的发展和创新。二、RAGFlow的
- 基于图像比对的跨平台UI一致性校验工具开发全流程指南——Android/iOS/Web三端自动化测试实战
追寻向上
uiandroidios
一、需求背景与方案概述1.1为什么需要跨平台UI校验?在移动互联网时代,同一产品需覆盖Android、iOS和Web三端。由于不同平台的开发框架(如Android的MaterialDesign与iOS的Cupertino风格)及渲染引擎差异,UI界面易出现以下问题:布局错位:按钮位置偏移、文本换行不一致视觉差异:颜色色差、字体粗细不同交互逻辑冲突:滑动方向、弹窗动画不一致传统人工测试效率低且易遗漏
- JVM八股文系列一:JVM基础知识
suikasa
JVM八股文javajvm
一.JVM基础知识1.JVM从编译到执行1.1Java程序的执行过程一个Java程序,首先经过javac编译成.class文件,然后JVM将其加载到方法区,执行引擎将会执行这些字节码。执行时,会翻译成操作系统相关的函数。JVM作为.class文件的翻译存在,输入字节码,调用操作系统函数。过程如下:Java文件->编译器>字节码->JVM->机器码。JVM也就是Java虚拟机。它能识别.class后
- JVM部分八股
努力向前ing
JVM八股详究javajvm八股
什么是JVM?有哪些好处?索引越界可能导致程序覆盖其他程序内存中的代码JVM是一套规范,有多种实现JVM运行流程?1.类加载器将java程序翻译为java字节码文件2.运行数据区将字节码文件加载到内存,字节码文件是JVM规范的文件,不能直接运行,而是交给执行引擎运行3.执行引擎中的解释器将字节码文件翻译为机器指令,交给CPU执行,执行过程中可能通过本地方法调用接口调用本地方法类的生命周期?加载:将
- 详解小程序多端框架全面测评
前端可乐老师
前端
现在流行的多端框架可以大致分为三类:1.全包型这类框架最大的特点就是从底层的渲染引擎、布局引擎,到中层的DSL,再到上层的框架全部由自己开发,代表框架是Qt和Flutter。这类框架优点非常明显:性能(的上限)高;各平台渲染结果一致。缺点也非常明显:需要完全重新学习DSL(QML/Dart),以及难以适配中国特色的端:小程序。这类框架是最原始也是最纯正的的多端开发框架,由于底层到上层每个环节都掌握
- 《Linux运维总结:基于银河麒麟V10+ARM64架构部署多机elasticsearch7.17.21分布式集群+单机kibana7.17.21二进制版ssl集群》
东城绝神
《Linux运维实战总结》运维linuxelasticsearchssl
总结:整理不易,如果对你有帮助,可否点赞关注一下?更多详细内容请参考:Linux运维实战总结一、背景elasticsearch是一个分布式、实时、高性能的搜索和分析引擎,它广泛应用于企业级搜索、日志分析、实时数据处理等领域。随着elasticsearch的广泛应用,安全性变得越来越重要。这里将从安全策略和访问控制两方面来部署elasticsearch集群安全策略涉及到数据安全、访问安全和操作安全等
- Rocky Linux安装部署Elasticsearch(ELK日志服务器)_rockylinux elk
2401_83739411
程序员服务器linuxelasticsearch
一、Elasticsearch的简介Elasticsearch是一个强大的开源搜索和分析引擎,可用于实时处理和查询大量数据。它具有高性能、可扩展性和分布式特性,支持全文搜索、聚合分析、地理空间搜索等功能,是构建实时应用和大规模数据分析平台的首选工具。二、RockyLinux系统安装链接:VMwareWorkstation下载安装(含秘钥)链接:VMwareWorkstation创建虚拟机链接:Ro
- Mysql相关知识:存储引擎、sql执行流程、索引失效
Cachel wood
sql语言sqlserver+mysqlmysqlsqlandroidab测试算法人工智能前端框架
文章目录MySQL存储引擎一、MySQL存储引擎概述二、常见存储引擎对比三、核心引擎详解1.InnoDB2.MyISAM四、如何选择存储引擎?五、引擎操作命令1.查看表的存储引擎2.修改表的存储引擎3.引擎与性能优化六、示例对比场景:频繁更新的订单表vs只读的产品分类表七、总结索引失效1.索引列使用函数或表达式2.隐式类型转换3.范围查询右侧的索引列失效4.模糊查询以通配符开头5.OR条件导致索引
- ffmpeg+ubuntu16.04编译ffmpeg库
小gpt&
QT+FFMPEG实战ffmpeglinux
个人使用环境:ubuntudesktop16.04+ffmpeg4.2.1以下的库进行完整编译ffmpeg介绍FFmpeg是一个开源的多媒体框架,广泛用于处理音频、视频、字幕等多媒体数据。它包含了丰富的工具和库,能够进行音视频的编解码、转码、流媒体处理、滤镜应用等操作。FFmpeg是许多多媒体应用程序和工具的核心引擎,功能强大且灵活,支持几乎所有常见的音视频格式。FFmpeg的主要组成部分ffmp
- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- 95% 向量资源节省,火山引擎云搜索 RAG 技术体系演进
字节跳动云原生计算
火山引擎搜索引擎算法
采访嘉宾|火山引擎云搜索团队鲁蕴铖、李杰辉、余炜强编辑|TinaInfoQ2023年,大模型惊艳了世界。2024年,RAG技术如日中天。RAG使得大模型能够在不更新模型参数的情况下,获得必要的上下文信息,从而减少大模型的幻觉。随着大型语言模型技术的不断成熟和行业应用的深入,人们对RAG系统的期望已经超越了对其“酷炫”效果的追求。企业和组织开始寻找更可靠、可扩展的RAG解决方案,以满足实际业务需求。
- 初探 Threejs 物理引擎CANNON,解锁 3D 动态魅力
伶俜Monster
Threejswebgl前端3dthreejscannon.js
简介Cannon.js是一个基于JavaScript的物理引擎,它可以在浏览器中模拟物理效果。它支持碰撞检测、刚体动力学、约束等物理效果,可以用于创建逼真的物理场景和交互。参考文档官方示例原理Cannon.js使用了欧拉角来表示物体的旋转,而不是四元数。这使得它在处理旋转时更加直观和易于理解。Cannon.js还支持多种碰撞检测算法,包括离散碰撞检测和连续碰撞检测。Cannon.js还支持多种约束
- Apache Doris整合Iceberg + Flink CDC构建实时湖仓体的联邦查询分析架构
MfvShell
apacheflink架构Flink
随着大数据技术的迅猛发展,构建实时湖仓体并进行联邦查询分析成为了许多企业的迫切需求。在这篇文章中,我们将探讨如何利用ApacheDoris整合Iceberg和FlinkCDC来构建这样一个架构,并提供相应的源代码示例。简介实时湖仓体是一种灵活、可扩展的数据架构,结合了数据湖和数据仓库的优势。ApacheDoris是一款开源的分布式SQL引擎,专注于实时分析和查询。Iceberg是一种开放式表格格式
- 游戏开发引擎对比:Godot、Unity、Unreal与cocos2d的优劣分析
scoone
游戏引擎godotunity
在游戏开发的世界中,选择合适的游戏引擎是项目成功的关键之一。本文将对比四种流行的游戏开发引擎:Godot、Unity、UnrealEngine和cocos2d,分析各自的优缺点,帮助开发者做出明智的选择。Godot:优点:开源且免费,无商业授权费用。轻量级,适合中小型游戏开发。使用GDScript脚本语言,易于上手。跨平台支持良好。缺点:社区相对较小,资源不如Unity丰富。在3D游戏开发方面不如
- 从关键词到权重:TF-IDF算法解析
多巴胺与内啡肽.
机器学习tf-idf算法机器学习
文章目录前言一、TF-IDF:关键词的“价值”评估师二、TF-IDF的计算:拆解关键词的“价值”三、TF-IDF的应用:从搜索引擎到文本挖掘四、代码实现:从《红楼梦》中提取核心关键词1、分卷处理1.1代码功能1.2代码实现1.2.1、读取文件1.2.2逐行处理1.2.3.关闭文件2、分词与停用词过滤2.1代码功能2.2代码实现2.2.1读取分卷内容构建DataFrame:2.2.2分词与停用词过滤
- 2025年从DeepSeek到Manus:AI如何重塑企业价值报告600+份汇总解读|附PDF下载
原文链接:https://tecdat.cn/?p=41172当前全球AI技术正从实验室走向产业化深水区,本报告以企业价值重构为核心,通过技术演进路径、行业竞争范式、落地实施策略三大维度,揭示AI如何从成本中心转变为价值引擎。数据显示,2025年生成式AI在中国创造的潜在经济价值达2万亿美元,其中制造业、电子行业生产力增益最为显著。本报告汇总解读基于《发布机构:华中科技大学数智管理与传播研究团队、
- 2025年PHP框架推荐及对比
行思理
LNMP运维php开发语言
以下是针对2025年PHP框架的推荐及全方位对比分析,结合性能、功能生态、适用场景等核心维度,帮助开发者做出合理选择:一、主流PHP框架推荐1.Laravel核心特性:以优雅的语法和强大的功能著称,支持EloquentORM、Blade模板引擎、队列系统等,适合复杂业务开发。社区生态丰富,提供大量扩展包(如Passport、Horizon)。性能:RPS约200-500,适合中大型项目,但对高并发
- Apache Storm实时流处理的核心技术
Hello.Reader
大数据apachestorm大数据
1.引言ApacheStorm是一个开源的、分布式的实时计算系统,专为处理流式数据而设计。它能够处理大量数据流并在极低的延迟下提供实时的结果。相比于传统的批处理系统,Storm具有处理无限数据流的能力,支持非常高的可扩展性和容错机制。Storm可以适用于多种编程语言,具有高度的灵活性。1.1什么是ApacheStorm?ApacheStorm是一个流处理引擎,它可以持续处理不断到来的数据流(str
- 使用 DashVector 进行高效的矢量检索和自查询检索器演示
bavDHAUO
python
在当代AI应用中,向量数据的管理和检索是至关重要的部分。DashVector是一个完全托管的向量数据库服务,提供了对高维稠密和稀疏向量的支持,允许实时插入和过滤搜索。这个服务基于DAMOAcademy自研的高效向量引擎Proxima核心构建,具备云原生和横向扩展能力,能够快速适应不同应用需求。在本篇文章中,我们将演示如何使用DashVector和SelfQueryRetriever来高效地进行矢量
- Spring Boot 整合 Elasticsearch 实践:从入门到上手
遇见伯灵说
mysqlSpringelasticsearchjenkinsspringboot
引言Elasticsearch是一个开源的分布式搜索引擎,广泛用于日志分析、搜索引擎、数据分析等场景。本文将带你通过一步步的教程,在SpringBoot项目中整合Elasticsearch,轻松实现数据存储与查询。1.创建SpringBoot项目首先,你需要创建一个SpringBoot项目。如果你还没有创建,可以使用SpringInitializr快速生成一个项目。在生成项目时,确保选择了以下依赖
- autosar功能安全文档解析
dont__cry
安全
该文档是AUTOSAR汽车搜索引擎发布的关于AUTOSAR经典平台功能安全措施的概述,涵盖功能安全机制、措施、硬件诊断等内容,为汽车安全相关系统开发提供指导。1.**引言**-**范围**:涵盖功能安全机制、措施及硬件诊断等多方面内容,帮助理解AUTOSAR在功能安全方面的作用。-**目的**:总结AUTOSAR功能安全要点,指导相关系统开发人员利用其机制和措施,取代旧文档。-**目标受众**:主
- Flink实践:通过Flink SQL进行SFTP文件的读写操作
kkk1622245
flinksql大数据
在大数据处理领域,ApacheFlink出类拔萃,它是一个高性能、易扩展、用于处理有界和无界数据流的分布式处理引擎。FlinkSQL是ApacheFlink提供的一种声明式API,允许开发者以SQL的形式,轻松实现复杂的数据流和批处理分析。本文将重点探讨如何通过FlinkSQL来实现对SFTP文件的读写操作,这是在实际应用中经常遇到的一种场景。Flink与SFTP文件的读写在很多实际应用场景中,数
- DeepSeek高能低耗AI创作突破
智能计算研究中心
其他
内容概要随着人工智能技术向垂直领域加速渗透,生成式模型的应用边界正经历革命性拓展。DeepSeek系列产品通过670亿参数混合专家架构,构建起覆盖学术研究、内容创作与编程开发的多模态解决方案。该架构融合视觉语言理解与多语言处理能力,在保持高响应速度的同时,显著降低算力消耗,其单位计算成本仅为同类产品的三分之一。值得关注的是,系统搭载的DeepSeekProver学术引擎可自动生成文献综述框架,而D
- BOE(京东方)位列2024年PCT国际专利申请榜全球第6 创新引擎推动产业高质发展
数据
3月17日(日内瓦当地时间),世界知识产权组织(WIPO)公布了2024年全球PCT国际专利申请排名,中国再次凭借卓越的创新表现领跑全球,PCT国际专利申请量稳居世界第一。其中,BOE(京东方)以1959件PCT专利申请量位列全球第6,连续9年进入全球PCT专利申请TOP10。这一成就不仅凸显了BOE(京东方)在创新显示技术领域的深厚积累和持续创新,更展现了其作为全球科技领军企业的强大竞争力和发展
- 基于Python的tkinter开发的一个工具,解析图片文件名并将数据自动化导出为Excel文件
帅帅的Python
GUIpython基础知识python自动化excel
文章目录一、开发背景与业务价值二、系统架构设计1.分层架构图解2.核心类结构3.文件解析流程三、关键技术实现详解1.高性能文件名解析引擎2.可视化数据展示3.智能Excel导出模块四、完整代码五、行业应用展望一、开发背景与业务价值在零售行业会员管理场景中,线下门店每日会产生大量客户充值凭证照片。传统人工整理方式存在三个痛点:效率低下:运营人员需要手动截图-粘贴-重命名图片文件数据孤立:财务系统无法
- c# 正则表达式基础知识
观无
c#正则表达式mysql
一、使用原理模式匹配机制:在C#中,正则表达式通过定义一种模式来描述文本的特征。例如,\d表示匹配任意一个数字字符。当使用正则表达式进行匹配时,正则表达式引擎会从输入文本的起始位置开始,逐个字符地将输入文本与模式进行比较。引擎尝试找到一个连续的字符序列,该序列与整个模式完全匹配。如果找到了这样的序列,则匹配成功;否则,匹配失败。回溯机制:当正则表达式中存在可选部分(如a?表示a可选出现一次或不出现
- 深度学习框架PyTorch——从入门到精通(5)自动微分
Fansv587
深度学习pytorch人工智能
使用torch.autograd自动微分张量、函数和计算图计算梯度禁用梯度追踪关于计算图的更多信息张量梯度和雅可比乘积在训练神经网络时,最常用的算法是反向传播。在该算法中,参数(模型权重)根据损失函数的梯度相对于给定参数进行调整。为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持为任何计算图自动计算梯度。考虑最简单的一层神经网络,具有输入x、参数w和b以
- 第七章Solr:企业级搜索应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
第七章Solr:企业级搜索应用1.背景介绍1.1搜索引擎的重要性在当今信息时代,数据量呈指数级增长,海量数据中蕴含着极其宝贵的信息和知识。然而,如何快速、准确地从大数据中检索出所需的信息,一直是企业和组织面临的巨大挑战。传统的数据库查询方式已经无法满足现代搜索需求,因此高效的搜索引擎应运而生。1.2什么是SolrApacheSolr是一个高性能、可扩展、云就绪的企业级搜索平台,由Apache软件基
- 5. MYSQL_存储引擎二多实例安装
q375923078
MYSQL存储引擎slow_loggeneric_logaudit
文章目录一.MyISAM存储引擎(下)1.MyISAM还在使用的原因2.MyISAM文件组成3.myisamchk二.Memory存储引擎1.Memory介绍2.Memory特性3.Memory的物理特性三.CSV存储引擎1.CSV介绍2.CSV文件组成2.CSV特性四.Federated存储引擎1.Federated介绍2.Federated语法五.多实例安装1.多实例介绍2.安装要求3.安装操
- 2025 年江苏省职业院校技能大赛“应用软件系统开发“赛项规程
qq_2924167571
java应用软件系统开发GZ031应用软件系统开发赛项职业院校技能大赛最新比赛资料
2025年江苏省职业院校技能大赛"应用软件系统开发"赛项规程一、赛项名称赛项编号:JSG2025031赛项名称:应用软件系统开发赛项组别:高职学生组、高职教师组赛项归属赛道:电子与信息赛道二需要最新竞赛资料“应用软件系统开发”文章底部名片联系我二、竞赛目的党的二十大报告明确指出“要推动战略性新兴产业融合集群发展,构建新一代信息技术等一批新的增长引擎”,新一代信息技术产业对经济社会高质量发展的赋能作
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p