poj 1811解题报告

 

Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 17747   Accepted: 3644
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 2 54).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2

这道题就是miiler_rabin素数测试和pollard_rho质因子分解的标准模板题。。。第一次做这样的题,这道题我是参照网上别人的代码写的,作为学习,当做模板学习了.....

代码:

语言:c++

#include<ctime> #include<iostream> using namespace std; long long factor[100],fac_top = -1; //计算两个数的gcd long long gcd(long long a,long long b) { if(a==0) return b; long long c; while(b!=0) { c=b; b=a%b; a=c; } return a; } //ret = (a*b)%n (n<2^62) long long muti_mod(long long a,long long b,long long n) { long long exp = a%n, res = 0; while(b) { if(b&1) { res += exp; if(res>n) res -= n; } exp <<= 1; if(exp>n) exp -= n; b>>=1; } return res; } // ret = (a^b)%n long long mod_exp(long long a,long long p,long long m) { long long exp=a%m, res=1; // while(p>1) { if(p&1)// res=muti_mod(res,exp,m); exp = muti_mod(exp,exp,m); p>>=1; } return muti_mod(res,exp,m); } //miller-rabin法测试素数, time 测试次数 bool miller_rabin(long long n, long long times) { if(n==2)return 1; if(n<2||!(n&1))return 0; long long a, u=n-1, x, y; int t=0; while(u%2==0){ t++; u/=2; } srand(time(0)); for(int i=0;i<times;i++) { a = rand() % (n-1) + 1; x = mod_exp(a, u, n); for(int j=0;j<t;j++) { y = muti_mod(x, x, n); if ( y == 1 && x != 1 && x != n-1 ) return false; //must not x = y; } if( y!=1) return false; } return true; } long long pollard_rho(long long n,int c) {//找出一个因子 long long x,y,d,i = 1,k = 2; srand(time(0)); x = rand()%(n-1)+1; y = x; while(true) { i++; x = (muti_mod(x,x,n) + c) % n; d = gcd(y-x, n); if(1 < d && d < n)return d; if( y == x) return n; if(i == k) { y = x; k <<= 1; } } } void findFactor(long long n,int k) {//二分找出所有质因子,存入factor if(n==1)return; if(miller_rabin(n, 10)) { factor[++fac_top] = n; return; } long long p = n; while(p >= n) p = pollard_rho(p,k--);//k值变化,防止死循环 findFactor(p,k); findFactor(n/p,k); } int main() { long long t,n,min; cin>>t; while(t--) { cin>>n; fac_top = min = -1; if(miller_rabin(n,10)) cout<<"Prime"<<endl; else { findFactor(n,107); for(int i=0;i<=fac_top;i++){ if(min<0||factor[i]<min) min = factor[i];} cout<<min<<endl; } } return 0; }  

 

 

 

你可能感兴趣的:(测试,Integer,input,each,n2,output)