memcache的一致性hash算法使用

memcache 是一个分布式的缓存系统,但是本身没有提供集群功能,在大型应用的情况下容易成为瓶颈。但是客户端这个时候可以自由扩展,分两阶段实现。第一阶段:key 要先根据一定的算法映射到一台memcache服务器。第二阶段从服务器中取出缓存的值。但是有一个问题,比如其中一台服务器挂了,或者需要增加一台服务 的时候,这个时候第一阶段的算法就很重要了,怎样使得原来的数据尽可能的继续有效,减少扩展节点或缩减节点带来的冲击。下面列出想到一些解决方法:

一:hash一致性算法:

优点:

当一个节点失效的时候,其他节点的数据不会受到破坏,这个节点的数据会被分流到另外一个节点。当增加一个节点时,只会对一个节点的一分部数据有影响。

 

 

缺点:

 极容易造成节点间数据量的不平衡,可能一个节点上热点非常多,一个节点上热点很少。

 

 

下面是具体介绍:(转自:http://blog.csdn.net/sparkliang/archive/2010/02/02/5279393.aspx)

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 cache 系统中应用越来越广泛;

1 基本场景

比如你有 N 个 cache 服务器(后面简称 cache ),那么如何将一个对象 object 映射到 N 个 cache 上呢,你很可能会采用类似下面的通用方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache ;

hash(object)%N

一切都运行正常,再考虑如下的两种情况;

1 一个 cache 服务器 m down 掉了(在实际应用中必须要考虑这种情况),这样所有映射到 cache m 的对象都会失效,怎么办,需要把 cache m 从 cache 中移除,这时候 cache 是 N-1 台,映射公式变成了 hash(object)%(N-1) ;

2 由于访问加重,需要添加 cache ,这时候 cache 是 N+1 台,映射公式变成了 hash(object)%(N+1) ;

1 和 2 意味着什么?这意味着突然之间几乎所有的 cache 都失效了。对于服务器而言,这是一场灾难,洪水般的访问都会直接冲向后台服务器;

再来考虑第三个问题,由于硬件能力越来越强,你可能想让后面添加的节点多做点活,显然上面的 hash 算法也做不到。

  有什么方法可以改变这个状况呢,这就是 consistent hashing...

2 hash 算法和单调性

         Hash 算法的一个衡量指标是单调性( Monotonicity ),定义如下:

        单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。

容易看到,上面的简单 hash 算法 hash(object)%N 难以满足单调性要求。

3 consistent hashing 算法的原理

consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在 key 映射关系,尽可能的满足单调性的要求。

下面就来按照 5 个步骤简单讲讲 consistent hashing 算法的基本原理。

3.1 环形hash 空间

考虑通常的 hash 算法都是将 value 映射到一个 32 为的 key 值,也即是 0~2^32-1 次方的数值空间;我们可以将这个空间想象成一个首( 0)尾( 2^32-1 )相接的圆环,如下面图 1 所示的那样。

图 1 环形 hash 空间

3.2 把对象映射到hash 空间

接下来考虑 4 个对象 object1~object4 ,通过 hash 函数计算出的 hash 值 key 在环上的分布如图 2 所示。

hash(object1) = key1;

… …

hash(object4) = key4;

图 2 4 个对象的 key 值分布

3.3 把cache 映射到hash 空间

Consistent hashing 的基本思想就是将对象和 cache 都映射到同一个 hash 数值空间中,并且使用相同的 hash 算法。

假设当前有 A,B 和 C 共 3 台 cache ,那么其映射结果将如图 3 所示,他们在 hash 空间中,以对应的 hash 值排列。

hash(cache A) = key A;

… …

hash(cache C) = key C;

图 3 cache 和对象的 key 值分布

 

说到这里,顺便提一下 cache 的 hash 计算,一般的方法可以使用 cache 机器的 IP 地址或者机器名作为 hash 输入。

3.4 把对象映射到cache

现在 cache 和对象都已经通过同一个 hash 算法映射到 hash 数值空间中了,接下来要考虑的就是如何将对象映射到 cache 上面了。

在这个环形空间中,如果沿着顺时针方向从对象的 key 值出发,直到遇见一个 cache ,那么就将该对象存储在这个 cache 上,因为对 象和 cache 的 hash 值是固定的,因此这个 cache 必然是唯一和确定的。这样不就找到了对象和 cache 的映射方法了吗?!

依然继续上面的例子(参见图 3 ),那么根据上面的方法,对象 object1 将被存储到 cache A 上; object2 和 object3 对应到 cache C ; object4 对应到 cache B ;

3.5 考察cache 的变动

前面讲过,通过 hash 然后求余的方法带来的最大问题就在于不能满足单调性,当 cache 有所变动时, cache 会失效,进而对后台服务器造成巨大的冲击,现在就来分析分析 consistent hashing 算法。

3.5.1 移除 cache

考虑假设 cache B 挂掉了,根据上面讲到的映射方法,这时受影响的将仅是那些沿 cache B 逆时针遍历直到下一个 cache ( cache C )之间的对象,也即是本来映射到 cache B 上的那些对象。

因此这里仅需要变动对象 object4 ,将其重新映射到 cache C 上即可;参见图 4 。

图 4 Cache B 被移除后的 cache 映射

3.5.2 添加 cache

再考虑添加一台新的 cache D 的情况,假设在这个环形 hash 空间中, cache D 被映射在对象 object2 和 object3 之间。这时受影响的将仅是那些沿 cache D 逆时针遍历直到下一个 cache ( cache B )之间的对象(它们是也本来映射到 cache C 上对象的一部分),将这些对象重新映射到 cache D 上即可。

 

因此这里仅需要变动对象 object2 ,将其重新映射到 cache D 上;参见图 5 。

图 5 添加 cache D 后的映射关系

4 虚拟节点

考量 Hash 算法的另一个指标是平衡性 (Balance) ,定义如下:

平衡性

        平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用。

hash 算法并不是保证绝对的平衡,如果 cache 较少的话,对象并不能被均匀的映射到 cache 上,比如在上面的例子中,仅部 署 cache A 和 cache C 的情况下,在 4 个对象中, cache A 仅存储了 object1 ,而 cache C 则存储了 object2 、 object3 和 object4 ;分布是很不均衡的。

为了解决这种情况, consistent hashing 引入了“虚拟节点”的概念,它可以如下定义:

“虚拟节点”( virtual node )是实际节点在 hash 空间的复制品( replica ),一实际个节点对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以 hash 值排列。

仍以仅部署 cache A 和 cache C 的情况为例,在图 4 中我们已经看到, cache 分布并不均匀。现在我们引入虚拟节点,并设置“复制个数”为 2 ,这就意味着一共会存 在 4 个“虚拟节点”, cache A1, cache A2 代表了 cache A ; cache C1, cache C2 代表了 cache C ;假设一种比较理想的情况,参见图 6 。

图 6 引入“虚拟节点”后的映射关系

 

此时,对象到“虚拟节点”的映射关系为:

objec1->cache A2 ; objec2->cache A1 ; objec3->cache C1 ; objec4->cache C2 ;

因此对象 object1 和 object2 都被映射到了 cache A 上,而 object3 和 object4 映射到了 cache C 上;平衡性有了很大提高。

引入“虚拟节点”后,映射关系就从 { 对象 -> 节点 } 转换到了 { 对象 -> 虚拟节点 } 。查询物体所在 cache 时的映射关系如图 7 所示。

图 7 查询对象所在 cache

 

“虚拟节点”的 hash 计算可以采用对应节点的 IP 地址加数字后缀的方式。例如假设 cache A 的 IP 地址为 202.168.14.241 。

引入“虚拟节点”前,计算 cache A 的 hash 值:

Hash(“202.168.14.241”);

引入“虚拟节点”后,计算“虚拟节”点 cache A1 和 cache A2 的 hash 值:

Hash(“202.168.14.241#1”);  // cache A1

Hash(“202.168.14.241#2”);  // cache A2

 

=========================================

一、概述

  1、我们的memcache客户端(这里我看的spymemcache的源码),使用了一致性hash算法ketama进行数据存储节点的选择。与常规的 hash算法思路不同,只是对我们要存储数据的key进行hash计算,分配到不同节点存储。一致性hash算法是对我们要存储数据的服务器进行hash 计算,进而确认每个key的存储位置。

 

 2、常规hash算法的应用以及其弊端

    最常规的方式莫过于hash取模的方式。比如集群中可用机器适量为N,那么key值为K的的数据请求很简单的应该路由到hash(K) mod N对应的机器。的确,这种结构是简单的,也是实用的。但是在一些高速发展的web系统中,这样的解决方案仍有些缺陷。随着系统访问压力的增长,缓存系统不 得不通过增加机器节点的方式提高集群的相应速度和数据承载量。增加机器意味着按照hash取模的方式,在增加机器节点的这一时刻,大量的缓存命不中,缓存 数据需要重新建立,甚至是进行整体的缓存数据迁移,瞬间会给DB带来极高的系统负载,设置导致DB服务器宕机。

  3、设计分布式cache系统时,一致性hash算法可以帮我们解决哪些问题?

   分布式缓存设计核心点:在设计分布式cache系统的时候,我们需要让key的分布均衡,并且在增加cache server后,cache的迁移做到最少。

   这里提到的一致性hash算法ketama的做法是:选择具体的机器节点不在只依赖需要缓存数据的key的hash本身了,而是机器节点本身也进行了hash运算。

 

二、一致性哈希算法情景描述(转载)

 

1、 hash机器节点

 

首先求出机器节点的hash值(怎么算机器节点的hash?ip可以作为hash的参数吧。。当然还有其他的方法了),然后将其分布到0~2^32的一个圆环上(顺时针分布)。如下图所示:
memcache的一致性hash算法使用_第1张图片

图一 

集群中有机器:A , B, C, D, E五台机器,通过一定的hash算法我们将其分布到如上图所示的环上。

 

2、访问方式

如果有一个写入缓存的请求,其中Key值为K,计算器hash值Hash(K), Hash(K) 对应于图 – 1环中的某一个点,如果该点对应没有映射到具体的某一个机器节点,那么顺时针查找,直到第一次找到有映射机器的节点,该节点就是确定的目标节点,如果超过 了2^32仍然找不到节点,则命中第一个机器节点。比如 Hash(K) 的值介于A~B之间,那么命中的机器节点应该是B节点(如上图 )。

 

3、增加节点的处理

如上图 – 1,在原有集群的基础上欲增加一台机器F,增加过程如下:

计算机器节点的Hash值,将机器映射到环中的一个节点,如下图:
memcache的一致性hash算法使用_第2张图片

图二 

 

增加机器节点F之后,访问策略不改变,依然按照(2)中的方式访问,此时缓存命不中的情况依然不可避免,不能命中的数据是hash(K)在增加节点 以前落在C~F之间的数据。尽管依然存在节点增加带来的命中问题,但是比较传统的 hash取模的方式,一致性hash已经将不命中的数据降到了最低。

 

Consistent Hashing最大限度地抑制了hash键的重新分布。另外要取得比较好的负载均衡的效果,往往在服务器数量比较少的时候需要增加虚拟节点来保证服务器能 均匀的分布在圆环上。因为使用一般的hash方法,服务器的映射地点的分布非常不均匀。使用虚拟节点的思想,为每个物理节点(服务器)在圆上分配 100~200个点。这样就能抑制分布不均匀,最大限度地减小服务器增减时的缓存重新分布。用户数据映射在虚拟节点上,就表示用户数据真正存储位置是在该 虚拟节点代表的实际物理服务器上。
下面有一个图描述了需要为每台物理服务器增加的虚拟节点。


memcache的一致性hash算法使用_第3张图片

图三 

x轴表示的是需要为每台物理服务器扩展的虚拟节点倍数(scale),y轴是实际物理服务器数,可以看出,当物理服务器的数量很小时,需要更大的虚 拟节点,反之则需要更少的节点,从图上可以看出,在物理服务器有10台时,差不多需要为每台服务器增加100~200个虚拟节点才能达到真正的负载均衡。

三、以spymemcache源码来演示虚拟节点应用

1、上边描述的一致性Hash算法有个潜在的问题是:
     (1)、将节点hash后会不均匀地分布在环上,这样大量key在寻找节点时,会存在key命中各个节点的概率差别较大,无法实现有效的负载均衡。
     (2)、如有三个节点Node1,Node2,Node3,分布在环上时三个节点挨的很近,落在环上的key寻找节点时,大量key顺时针总是分配给Node2,而其它两个节点被找到的概率都会很小。

2、这种问题的解决方案可以有:
     改善Hash算法,均匀分配各节点到环上;[引文]使用虚拟节点的思想,为每个物理节点(服务器)在圆上分配100~200个点。这样就能抑制分布不均 匀,最大限度地减小服务器增减时的缓存重新分布。用户数据映射在虚拟节点上,就表示用户数据真正存储位置是在该虚拟节点代表的实际物理服务器上。

在查看Spy Memcached client时,发现它采用一种称为Ketama的Hash算法,以虚拟节点的思想,解决Memcached的分布式问题。 

3、源码说明

该client采用TreeMap存储所有节点,模拟一个环形的逻辑关系。在这个环中,节点之前是存在顺序关系的,所以TreeMap的key必须实现Comparator接口。
那节点是怎样放入这个环中的呢?

protected void setKetamaNodes(List<MemcachedNode> nodes) {  
TreeMap<Long, MemcachedNode> newNodeMap = new TreeMap<Long, MemcachedNode>();  
int numReps= config.getNodeRepetitions();  
for(MemcachedNode node : nodes) {  
    // Ketama does some special work with md5 where it reuses chunks.  
    if(hashAlg == HashAlgorithm.KETAMA_HASH) {  
        for(int i=0; i<numReps / 4; i++) {  
            byte[] digest=HashAlgorithm.computeMd5(config.getKeyForNode(node, i));  
            for(int h=0;h<4;h++) {  
                Long k = ((long)(digest[3+h*4]&0xFF) << 24)  
                    | ((long)(digest[2+h*4]&0xFF) << 16)  
                    | ((long)(digest[1+h*4]&0xFF) << 8)  
                    | (digest[h*4]&0xFF);  
                newNodeMap.put(k, node);  
                getLogger().debug("Adding node %s in position %d", node, k);  
            }  
  
        }  
    } else {  
        for(int i=0; i<numReps; i++) {  
            newNodeMap.put(hashAlg.hash(config.getKeyForNode(node, i)), node);  
        }  
    }  
}  
assert newNodeMap.size() == numReps * nodes.size();  
ketamaNodes = newNodeMap;  

上面的流程大概可以这样归纳:四个虚拟结点为一组,以getKeyForNode方法得到这组虚拟节点的name,Md5编码后,每个虚拟结点对应Md5 码16个字节中的4个,组成一个long型数值,做为这个虚拟结点在环中的惟一key。第10行k为什么是Long型的呢?就是因为Long型实现了 Comparator接口。

处理完正式结点在环上的分布后,可以开始key在环上寻找节点的游戏了。
对于每个key还是得完成上面的步骤:计算出Md5,根据Md5的字节数组,通过Kemata Hash算法得到key在这个环中的位置。

    MemcachedNode getNodeForKey(long hash) {  
        final MemcachedNode rv;  
        if(!ketamaNodes.containsKey(hash)) {  
            // Java 1.6 adds a ceilingKey method, but I'm still stuck in 1.5  
            // in a lot of places, so I'm doing this myself.  
            SortedMap<Long, MemcachedNode> tailMap=getKetamaNodes().tailMap(hash);  
            if(tailMap.isEmpty()) {  
                hash=getKetamaNodes().firstKey();  
            } else {  
                hash=tailMap.firstKey();  
            }  
        }  
        rv=getKetamaNodes().get(hash);  
        return rv;  
    }  

上边代码的实现就是在环上顺时针查找,没找到就去的第一个,然后就知道对应的物理节点了。

四、应用场景分析

1、memcache的add方法:通过一致性hash算法确认当前客户端对应的cacheserver的hash值以及要存储数据key的hash进行对应,确认cacheserver,获取connection进行数据存储

2、memcache的get方法:通过一致性hash算法确认当前客户端对应的cacheserver的hash值以及要提取数据的hash值,进而确认存储的cacheserver,获取connection进行数据提取

五、总结

1、一致性hash算法只是帮我们减少cache集群中的机器数量增减的时候,cache的数据能进行最少重建。只要cache集群的server数量有变化,必然产生数据命中的问题

2、对于数据的分布均衡问题,通过虚拟节点的思想来达到均衡分配。当然,我们cache server节点越少就越需要虚拟节点这个方式来均衡负载。

3、我们的cache客户端根本不会维护一个map来记录每个key存储在哪里,都是通过key的hash和cacheserver(也许ip可以作为参数)的hash计算当前的key应该存储在哪个节点上。

4、当我们的cache节点崩溃了。我们必定丢失部分cache数据,并且要根据活着的cache server和key进行新的一致性匹配计算。有可能对部分没有丢失的数据也要做重建...

5、至于正常到达数据存储节点,如何找到key对应的数据,那就是cache server本身的内部算法实现了,此处不做描述。

这里只是针对数据的存储方式以及提取方式进行了流程展示。

你可能感兴趣的:(memcache的一致性hash算法使用)