opencv模版匹配




n久之前在网上搜的的代码···想保存一份···· thx to the author

code 如下:


#include "StdAfx.h"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/// 全局变量
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";
char *dst_window = "Dest_windows";

int match_method;
int max_Trackbar = 5;

/// 函数声明
void MatchingMethod( int, void* );

/** @主函数 */
int main( int argc, char** argv )
{
  /// 载入原图像和模板块
  img = imread( "d:\\me.jpg");
  templ = imread("d:\\1.bmp" );


/*
	IplImage *img_src = cvLoadImage("d:\\me.jpg", 1);
	IplImage *img_dst = cvLoadImage("d:\\eye.jpg", 1);

	img(img_src, 0);
	img(img_dst, 0);
*/

  /// 创建窗口
   namedWindow( image_window, CV_WINDOW_AUTOSIZE );
   namedWindow( result_window, CV_WINDOW_AUTOSIZE );
   namedWindow( dst_window, CV_WINDOW_AUTOSIZE );

  /// 创建滑动条
  char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
  createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );

  MatchingMethod( 0, 0 );

  waitKey(0);
  return 0;
}

/**
 * @函数 MatchingMethod
 * @简单的滑动条回调函数
 */
void MatchingMethod( int, void* )
{
  /// 将被显示的原图像
  Mat img_display;
  img.copyTo( img_display );

  /// 创建输出结果的矩阵
  int result_cols =  img.cols - templ.cols + 1;
  int result_rows = img.rows - templ.rows + 1;

  result.create( result_cols, result_rows, CV_32FC1 );

  /// 进行匹配和标准化
  matchTemplate( img, templ, result, match_method );
  normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

  /// 通过函数 minMaxLoc 定位最匹配的位置
  double minVal; double maxVal; Point minLoc; Point maxLoc;
  Point matchLoc;

  minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );

  /// 对于方法 SQDIFF 和 SQDIFF_NORMED, 越小的数值代表更高的匹配结果. 而对于其他方法, 数值越大匹配越好
  if( match_method  == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
    { matchLoc = minLoc; }
  else
    { matchLoc = maxLoc; }


  rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
  rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );

  imshow( image_window, img_display );
  imshow( result_window, result );
  imshow( dst_window, templ );

  return;
}


你可能感兴趣的:(opencv模版匹配)