Linux下内存分配与映射之二

Linux下内存管理

进程是运行于虚拟地址空间的一个程序。任何在Linux系统下运行的程序都是进程。大多数进程都需要虚拟内存。Linux支持虚拟内存,就是使用磁盘作为RAM的扩展,时可用内存相应的扩大。用作虚拟内存的这部分磁盘叫做交换空间(SWAP)。

Linux操作系统采用请求式分页虚拟存储管理方法。系统为每个进程提供了4GB的虚拟存储空间。,各个进程的虚拟存储空间彼此独立。

虚拟内存提供的功能包括:

       . 地址空间(0-4G)

       . 进程的保护

       . 内存映射

       . 公平的物理内存分配

       . 共享虚拟内存

 

一 页

       内核把物理页作为内存管理的基本单位;内存管理单元(MMU)把虚拟地址转换为物理

地址,通常以页为单位进行处理。MMU以页大小为单位来管理系统中的页表。

       32位系统:页大小4KB

       64位系统:页大小8KB

内核用相应的数据结构表示系统中的每个物理页:

  <linux/mm_types.h>

  struct page {}

内核通过这样的数据结构管理系统中所有的页,因此内核判断一个页是否空闲,谁有拥有这个页

,拥有者可能是:用户空间进程、动态分配的内核数据、静态内核代码、页高速缓存……

系统中每一个物理页都要分配这样一个结构体,进行内存管理。

二 区

       Linux内存寻址存在问题:

一些硬件只能用某些特定的内存来执行DMA(直接内存访问)

一些体系结构其内存的物理寻址范围必须你寻址范围大得多。这样导致一些内存不能永久映射到内核空间上。

       通常32位Linux内核地址空间划分0~3G为用户空间,3~4G为内核空间。当内核模块代码或线程访问内存时,

代码中的内存地址都为逻辑地址,而对应到真正的物理内存地址,需要地址一对一的映射。因此内核空间地址为3~4G,

最多只能映射到1G空间的内存,超出1G大小的内存将如何去问呢!

       由于存在上述条件的限制。Linux将内核空间地址划分为三个区:

ZONE_DMA、ZONE_NORMAL和ZONE_HIGHMEM。

       ZONE_HIGHMEM即为高端内存,这就是内存高端内存概念的由来。

 

在x86结构中,三种类型的区域如下:

  ZONE_DMA        内存开始的16MB

  ZONE_NORMAL       16MB~896MB

  ZONE_HIGHMEM       896MB ~ 结束

同样每个区包含众多页,形成不同内存池,按照用途进行内存分配。

用相应的数据结构来表示区:

  <linux/mmzone.h>

  struct zone {}

三 获取页/内存

static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)

该函数分配2的order次方个连续的物理页,返回指向第一个页的page结构体指针。

 

void *page_address(const struct page *page)

返回指向给定物理页当前所在的逻辑地址

extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);

extern unsigned long get_zeroed_page(gfp_t gfp_mask);

释放:

extern void __free_pages(struct page *page, unsigned int order);

extern void free_pages(unsigned long addr, unsigned int order);

 

内存的分配可能失败,内存的释放要准确!

 

1 kmalloc

kmalloc()函数与用户空间malloc一组函数类似,获得以字节为单位的一块内核内存。

void *kmalloc(size_t size, gfp_t flags)

void kfree(const void *objp)

 

分配内存物理上连续。

gfp_t标志:表明分配内存的方式。如:

GFP_ATOMIC:分配内存优先级高,不会睡眠

GFP_KERNEL:常用的方式,可能会阻塞。

 

2 vmalloc    

 

void *vmalloc(unsigned long size)

void vfree(const void *addr)

vmalloc()与kmalloc方式类似,vmalloc分配的内存虚拟地址是连续的,而物理地址则无需连续,与用户空间分配函数一致。

vmalloc通过分配非连续的物理内存块,在修正页表,把内存映射到逻辑地址空间的连续区域中,虚拟地址是连续的。

       是否必须要连续的物理地址和具体使用场景有关。在不理解虚拟地址的硬件设备中,内存区都必须是连续的。

       通过建立页表转换成虚拟地址空间上连续,肯定存在一些消耗,带来性能上影响。

所以通常内核使用kmalloc来申请内存,在需要大块内存时使用vmalloc来分配。

 

四 slab层

       内核中经常进行内存的分配和释放。为了便于数据的频繁分配和回收,通常建立一个空

 

闲链表——内存池。当不使用的已分配的内存时,将其放入内存池中,而不是直接释放掉。

       Linux内核提供了slab层来管理内存的分配和释放。

频繁分配和回收必然导致内存碎片,缓存他们.

slab层得设计实现

       slab层把不同的对象划分为所谓的高速缓存组。每个高速缓存组存放不同类型的对象。高速缓存划分为slab,

slab由一个或多个物理上连续的页组成。每个slab处于三种状态之一:满,部分满,空。

高速缓存,slab,对象之间的关系:

     

 

 

       与传统的内存管理模式相比, slab 缓存分配器提供了很多优点。首先,内核通常依赖于对小对象的分配,

它们会在系统生命周期内进行无数次分配。slab 缓存分配器通过对类似大小的对象进行缓存而提供这种功能,

从而避免了常见的碎片问题。slab 分配器还支持通用对象的初始化,从而避免了为同一目而对一个对象重复

进行初始化。最后,slab 分配器还可以支持硬件缓存对齐和着色,这允许不同缓存中的对象占用相同的缓存行,

从而提高缓存的利用率并获得更好的性能。

 

slab数据结构和接口:

每个高速缓存用kmem_cache结构来表示:

       struct kmem_cache {

              struct kmem_list3 **nodelists;

              ……

       }

缓存区包含三种slab:满,未满,空闲

struct kmem_list3 {

       struct list_head slabs_partial; /* partial list first, better asm code */

       struct list_head slabs_full;

       struct list_head slabs_free;

       ……

};

每一个slab包含多个对象:

struct slab {

              struct list_head list;

              unsigned long colouroff;

              void *s_mem;            /* including colour offset */

              unsigned int inuse;     /* num of objs active in slab */

              kmem_bufctl_t free;

              unsigned short nodeid;

};

 

相关接口:mm/slab.c

              内核函数 kmem_cache_create 用来创建一个新缓存。这通常是在内核初始化时执行的,或者在首次加载内核模块时执行。

struct kmem_cache *kmem_cache_create (

  const char *name,

  size_t size,

  size_t align,

  unsigned long flags,

  void (*ctor)(void *))

      

name 参数定义了缓存名称,proc 文件系统(在 /proc/slabinfo 中)使用它标识这个缓存。

size 参数指定了为这个缓存创建的对象的大小,

align 参数定义了每个对象必需的对齐。

flags 参数指定了为缓存启用的选项:

  kmem_cache_create 的部分选项(在 flags 参数中指定)

  SLAB_RED_ZONE    在对象头、尾插入标志,用来支持对缓冲区溢出的检查。

  SLAB_POISON  使用一种己知模式填充 slab,允许对缓存中的对象进行监视(对象属对象所有,不过可以在外部进行修改)。

  SLAB_HWCACHE_ALIGN      指定缓存对象必须与硬件缓存行对齐。

ctor 和 dtor 参数定义了一个可选的对象构造器和析构器。构造器和析构器是用户提供的回调函数。当从缓存中分配新对象时,可以通过构造器进行初始化。

    要从一个命名的缓存中分配一个对象,可以使用 kmem_cache_alloc 函数。

 

void kmem_cache_alloc( struct kmem_cache *cachep, gfp_t flags );

这个函数从缓存中返回一个对象。注意如果缓存目前为空,那么这个函数就会调用 cache_alloc_refill 向缓存中增加内存。

kmem_cache_alloc 的 flags 选项与 kmalloc 的

cachep:所建立的缓存区

flags参数:

  GFP_USER 为用户分配内存(这个调用可能会睡眠)。

  GFP_KERNEL    从内核 RAM 中分配内存(这个调用可能会睡眠)。

  GFP_ATOMIC   使该调用强制处于非睡眠状态(对中断处理程序非常有用)。

  GFP_HIGHUSER      从高端内存中分配内存。

 

五 高端内存的映射

永久映射:可能会阻塞

  映射一个给定的page结构到内核地址空间:

  void *kmap(struct page *page)

  解除映射:

  void kunmap(struct page *page)

 

临时映射:不会阻塞     

void *kmap_atomic(struct page *page)

 

六 分配函数的选择

  l  连续的物理页:kmalloc或者低级页分配器

  l  高端内存分配:alloc_pages 指向page结构指针,不是逻辑地址指针。再通过kmap()把高端地址内存映射到内核的逻辑地址空间。

  l  无需连续物理地址:vmalloc 虚拟地址连续物理地址可能不连续,相对存在性能损失

  l  频繁创建和销毁很多较大数据结构:建立slab缓存区,提高对象分配和回收性能

 

 

你可能感兴趣的:(Linux下内存分配与映射之二)