来自:http://www.cnblogs.com/skyiv/archive/2010/03/27/1698550.html
记f(n)为n的划分数,我们有递推公式:
f(2m + 1) = f(2m),
f(2m) = f(2m - 1) + f(m),
初始条件:f(1) = 1。
证明:
证明的要点是考虑划分中是否有1。
记:
A(n) = n的所有划分组成的集合,
B(n) = n的所有含有1的划分组成的集合,
C(n) = n的所有不含1的划分组成的集合,
则有: A(n) = B(n)∪C(n)。
又记:
f(n) = A(n)中元素的个数,
g(n) = B(n)中元素的个数,
h(n) = C(n)中元素的个数,
易知: f(n) = g(n) + h(n)。
以上记号的具体例子见文末。
我们先来证明: f(2m + 1) = f(2m),
首先,2m + 1 的每个划分中至少有一个1,去掉这个1,就得到 2m 的一个划分,故 f(2m + 1)≤f(2m)。
其次,2m 的每个划分加上个1,就构成了 2m + 1 的一个划分,故 f(2m)≤f(2m + 1)。
综上,f(2m + 1) = f(2m)。
接着我们要证明: f(2m) = f(2m - 1) + f(m),
把 B(2m) 中的划分中的1去掉一个,就得到 A(2m - 1) 中的一个划分,故 g(2m)≤f(2m - 1)。
把 A(2m - 1) 中的划分加上一个1,就得到 B(2m) 中的一个划分,故 f(2m - 1)≤g(2m)。
综上,g(2m) = f(2m - 1)。
把 C(2m) 中的划分的元素都除以2,就得到 A(m) 中的一个划分,故 h(2m)≤f(m)。
把 A(m) 中的划分的元素都乘2,就得到 C(2m) 中的一个划分,故 f(m)≤h(2m)。
综上,h(2m) = f(m)。
所以: f(2m) = g(2m) + h(2m) = f(2m - 1) + f(m)。
这就证明了我们的递推公式。
一些例子:
A(3) = {
(1,1,1)
(1,2)
},
f(3) = 2,
A(4) = {
(1,1,1,1)
(1,1,2)
(2,2)
(4)
},
f(4) = 4,
A(5) = {
(1,1,1,1,1)
(1,1,1,2)
(1,2,2)
(1,4)
},
f(5) = 4,
A(6) = {
(1,1,1,1,1,1)
(1,1,1,1,2)
(1,1,2,2)
(1,1,4)
(2,2,2)
(2,4)
},
f(6) = 6,
B(6) = {
(1,1,1,1,1,1)
(1,1,1,1,2)
(1,1,2,2)
(1,1,4)
},
g(6) = 4,
参考:http://www.51nod.com/answer/index.html#!answerId=159
import java.io.InputStreamReader; import java.math.BigInteger; import java.util.Scanner; public class nod1047 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner cin = new Scanner(new InputStreamReader(System.in)); BigInteger []num = new BigInteger[1000002]; num[1] = BigInteger.valueOf(1); int n = cin.nextInt(); for(int i = 2; i <= n; ++ i) { if(i%2 == 0) { num[i] = num[i-1].add(num[i/2]); } else { num[i] = num[i-1]; } } System.out.println(num[n]); } }