slabs.{h,c}
slab的数据结构如下:
typedef struct { unsigned int size; /* sizes of items 每个item的大小*/ unsigned int perslab; /* how many items per slab 每个slabs中能容纳多少个item*/ void *slots; /* list of item ptrs 空闲列表*/ unsigned int sl_curr; /* total free items in list 空闲列表空闲item个数*/ unsigned int slabs; /* how many slabs were allocated for this class 已经分配来多少个slabs*/ void **slab_list; /* array of slab pointers 指向一个void *数组,该数组指向实际分配的内存*/ unsigned int list_size; /* size of prev array 最大允许slabs个数*/ unsigned int killing; /* index+1 of dying slab, or zero if none */ size_t requested; /* The number of requested bytes 这个slabclass中已经分配使用了多少bytes的内存*/ } slabclass_t;
s
下面是网上找的一张图,从上面字段可以看出,已经没有来end_page_ptr这个指针
slabs.c中几个重要的全局变量
static slabclass_t slabclass[MAX_NUMBER_OF_SLAB_CLASSES]; //slabs数组 static size_t mem_limit = 0; //最大的内存使用,超过就不分配内存 static size_t mem_malloced = 0; //当前已经从系统分配来多少内存
下面看几个主要的函数
init函数
/** * Determines the chunk sizes and initializes the slab class descriptors * accordingly. */ void slabs_init(const size_t limit, const double factor, const bool prealloc) { int i = POWER_SMALLEST - 1; unsigned int size = sizeof(item) + settings.chunk_size; mem_limit = limit; memset(slabclass, 0, sizeof(slabclass)); while (++i < POWER_LARGEST && size <= settings.item_size_max / factor) { /* Make sure items are always n-byte aligned */ if (size % CHUNK_ALIGN_BYTES) size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES); slabclass[i].size = size; slabclass[i].perslab = settings.item_size_max / slabclass[i].size; size *= factor; if (settings.verbose > 1) { fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n", i, slabclass[i].size, slabclass[i].perslab); } } power_largest = i; slabclass[power_largest].size = settings.item_size_max; slabclass[power_largest].perslab = 1; if (settings.verbose > 1) { fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n", i, slabclass[i].size, slabclass[i].perslab); } /* for the test suite: faking of how much we've already malloc'd */ { char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC"); if (t_initial_malloc) { mem_malloced = (size_t)atol(t_initial_malloc); } } }
limit是最大允许分配的空间,factor是增长因子,即每个slabclass的item size比上一个大 factor倍,不考虑对齐的话。
初始值
unsigned int size = sizeof(item) + settings.chunk_size;item是个struct稍后看item的时候再解释,主要是作为链表元素使用,同时放实际的数据。
init函数主要就是设置来mem_limit, 每个slabclass的item大小和item数量,这里并没有使用prealloc,所有没有分配内存,每个slabclass的list_size和sl_curr都为0
alloc函数:
在slabclass[id]上分配size个字节
void *slabs_alloc(size_t size, unsigned int id) { void *ret; pthread_mutex_lock(&slabs_lock); ret = do_slabs_alloc(size, id); pthread_mutex_unlock(&slabs_lock); return ret; }直接调用的do_slabs_alloc函数,是do_slabs_alloc的线程安全版吧,因为它操作的slabclass ,mem_limit都是全局static的变量
static void *do_slabs_alloc(const size_t size, unsigned int id) { slabclass_t *p; void *ret = NULL; item *it = NULL; //确保id在有效范围 if (id < POWER_SMALLEST || id > power_largest) { MEMCACHED_SLABS_ALLOCATE_FAILED(size, 0); return NULL; } p = &slabclass[id]; assert(p->sl_curr == 0 || ((item *)p->slots)->slabs_clsid == 0); //要么sl_curr空闲列表为空,不为空时slots指向的头一个item的cslid值必须为0 /* fail unless we have space at the end of a recently allocated page, we have something on our freelist, or we could allocate a new page */ //如果空闲列表不为空,直接从空闲列表中分配 //如果空闲列表为空,则do_slabs_newslab来增加该slabclass的slabs // 如果do_slabs_newslab失败则返回null if (! (p->sl_curr != 0 || do_slabs_newslab(id) != 0)) { /* We don't have more memory available */ ret = NULL; } else if (p->sl_curr != 0) { /* return off our freelist */ //返回slots,slots指向下一个item it = (item *)p->slots; p->slots = it->next; if (it->next) it->next->prev = 0; p->sl_curr--; ret = (void *)it; } if (ret) { p->requested += size; MEMCACHED_SLABS_ALLOCATE(size, id, p->size, ret); } else { MEMCACHED_SLABS_ALLOCATE_FAILED(size, id); } return ret; }函数的逻辑在代码注释中也解释得差不多,就是返回slots指向的item,并使slots指向下一个item,,可以看出其实slots指向的是一个item为元素的双向链表
如果slots为空,则需要调用do_slabs_newslab来分配一个新的slab
static int do_slabs_newslab(const unsigned int id) { slabclass_t *p = &slabclass[id]; int len = settings.slab_reassign ? settings.item_size_max : p->size * p->perslab; char *ptr; //成功:如果没有超出mem_limit,并且grow_slab_list返回1,则调用memory_allocate分配内存 //其余情况似失败,返回0 if ((mem_limit && mem_malloced + len > mem_limit && p->slabs > 0) || (grow_slab_list(id) == 0) || ((ptr = memory_allocate((size_t)len)) == 0)) { MEMCACHED_SLABS_SLABCLASS_ALLOCATE_FAILED(id); return 0; } //将新分配的内存全部置0,通过split_slab_page_into_freelist,将新分配的内存放到slots中 //这就是为什么取消来end_page_ptr的原因了 memset(ptr, 0, (size_t)len); split_slab_page_into_freelist(ptr, id); //slabs加1 p->slab_list[p->slabs++] = ptr; mem_malloced += len; MEMCACHED_SLABS_SLABCLASS_ALLOCATE(id); return 1; }
static int grow_slab_list (const unsigned int id) { slabclass_t *p = &slabclass[id]; //slabs == list_size表明已经到了分配的最大slabs个数来,需要realloc来重新分配空间 if (p->slabs == p->list_size) { //*2倍增长,初始为16 //即初始时,slab_list指向一个函数16个void *的数组 size_t new_size = (p->list_size != 0) ? p->list_size * 2 : 16; void *new_list = realloc(p->slab_list, new_size * sizeof(void *)); if (new_list == 0) return 0; p->list_size = new_size; p->slab_list = new_list; } return 1; }
memory_allocate这个函数最简单来,就是调用malloc来分配内存
static void *memory_allocate(size_t size) { void *ret; if (mem_base == NULL) { /* We are not using a preallocated large memory chunk */ ret = malloc(size); } else { ret = mem_current; if (size > mem_avail) { return NULL; } /* mem_current pointer _must_ be aligned!!! */ if (size % CHUNK_ALIGN_BYTES) { size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES); } mem_current = ((char*)mem_current) + size; if (size < mem_avail) { mem_avail -= size; } else { mem_avail = 0; } } return ret; }
ret = malloc(size); return ret;
分配的最后一个函数,将新分配的内存直接放到slots中
static void split_slab_page_into_freelist(char *ptr, const unsigned int id) { slabclass_t *p = &slabclass[id]; int x; for (x = 0; x < p->perslab; x++) { do_slabs_free(ptr, 0, id); ptr += p->size; } }就是每p->size个字节为一个item放到slots中,通过调用do_slabs_free来实现。这个函数在后面解释。
到此为止,slab分配全部完成。
free函数
free并不是将内存返回给系统,而是将不使用的item占用的空间重新放到相对应的slabclass的slots中
/** Free previously allocated object */ void slabs_free(void *ptr, size_t size, unsigned int id) { pthread_mutex_lock(&slabs_lock); do_slabs_free(ptr, size, id); pthread_mutex_unlock(&slabs_lock); }跟slabs_alloc一样,调用do_slabs_free来完成,是线程安全的。
static void do_slabs_free(void *ptr, const size_t size, unsigned int id) { slabclass_t *p; item *it; assert(((item *)ptr)->slabs_clsid == 0); assert(id >= POWER_SMALLEST && id <= power_largest); if (id < POWER_SMALLEST || id > power_largest) return; MEMCACHED_SLABS_FREE(size, id, ptr); p = &slabclass[id]; it = (item *)ptr; it->it_flags |= ITEM_SLABBED; it->prev = 0; it->next = p->slots; if (it->next) it->next->prev = it; p->slots = it; p->sl_curr++; p->requested -= size; return; }
可以看出,是将ptr指向的内存空间加到slots的头,slots指向这个ptr,即ptr变成slots的头item。修改相应的属性如iitem->it_flags |= ITEM_SLABBED
sl_curr加1等。
这就是大概memcached的内存池吧。